
November 2019

The Cloud Native Telco

 www.metaswitch.com © 2019 Metaswitch Networks. All Rights Reserved

Executive Summary

Introduction

What Cloud Native Looks Like
On-Boarding
OSS/BSS Integration
Deployment
Configuration Management
Healing
Scaling
Software Upgrade

The Cloud Native Dilemma

Path to the Cloud Native Telco

Who Dares Wins

3

4

5

6

7
8

10

12

14

Contents

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 3

Faced with a continuing decline in revenue per bit and a constantly growing demand for
bandwidth, network operators must look for creative ways to drive down the cost per bit
as quickly as possible, while at the same time seeking out opportunities for new value-add.

Executive Summary

NFV was supposed to address these needs by
reducing Capex through exploitation of indus-
try-standard hardware, reducing Opex by ag-
gressive automation of operations, and by ac-
celerating innovation through the flexibility of
software-based networks and the agility of spe-
cialist software vendors, but it has largely failed
in this mission. Network operators now recognize
that simply replacing physical network functions
with equivalent virtualized software appliances,
as prescribed by ETSI standards, is only scratching
the surface of what is possible when you move to
a pure software world. The ultimate promise of
NFV will only be realized with new network func-
tion software systems that are designed from the
ground up to exploit the power of the cloud: so
called “cloud native”.

5G is crying out for a radical new approach to
NFV. The far greater capacity provided by the 5G
RAN will drive up traffic volumes dramatically, but
with no increase in ARPU, necessitating steep re-
ductions in cost per bit. At the same time, the new
revenue opportunities offered by 5G, particularly
in the enterprise space, require operators to be far
more agile, and demand new techniques such as
network slicing that need unprecedented levels of
operations automation.

NFV was supposed to help network operators ap-
proach the agility and operations efficiency of the
Web-scale players. That would represent a mas-
sive leap forward from where they are today, and
would greatly improve the returns from the mas-

sive investments that are being made in 5G. But
this cannot be achieved by continuing to pursue a
traditional approach to NFV. The cloud native ap-
proach is vastly different, and vastly better. It will
go a long way to closing the efficiency and agility
gaps between telcos and Web-scale players, pre-
cisely because cloud native is the way the Web-
scale world has always worked.

Every aspect of working with cloud native network
functions (CNFs) across their entire life cycle is far
quicker, far easier, far less resource intensive and
far less error-prone that it has been with tradition-
al virtual network functions (VNFs). The difference
is truly transformative. But the massive differ-
ence between the cloud native approach and the
traditional approach to NFV means that it’s hard
to get there from here. Essentially, cloud native
represents a discontinuity in the telco networking
technology landscape. There is no realistic evolu-
tion path from VNFs to CNFs: cloud native is a step
change.

Embracing a cloud native approach to NFV requires
a bold step. It probably means letting go of some
comfortable incumbent vendor relationships, and
it certainly means re-engineering some key as-
pects of the procurement process. This won’t be
easy for many network operators. But if our expe-
rience is anything to go by, it will turn out in ret-
rospect to be a far more positive experience than
could possibly have been expected up front. And
it will bring those network operators who have the
courage to take that bold step to a far better place.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 4

The vision of Network Functions Virtualization seemed to many in the industry at the time
to be a bold one: a decisive move away from reliance on physical networking boxes to pure
software implementations of network functions running on commodity compute hardware.

Introduction

But in retrospect, the original NFV vision was se-
riously lacking in ambition. By focusing on how
physical network functions would be replaced by
equivalent “software appliances”, it failed utterly
to foresee the extent to which the design and ar-
chitecture freedoms of working purely in software
can bring about a radical transformation of the tel-
co technology landscape.

As a long-standing developer of communications
and networking software, we have always paid
close attention to evolving practices in software
design, development and deployment. And it
was apparent to us, even in October 2012, that
the “software appliance” model of NFV could
only ever be an interim, tactical approach. The
Web-scale world was already demonstrating an
ability to build massively scalable and resilient
applications deployed on cloud computing infra-
structures, exploiting techniques such as stateless
processing and decomposition into microservices,
and it seemed to us that this kind of approach
was equally applicable to many of the network
functions that service providers rely on. When we
started building our Clearwater IMS product, start-
ing from scratch in 2012, we fully embraced those
Web-scale practices and subsequently delivered
the first carrier-grade network function solution
that could truly be called cloud native.

For most network operators, the NFV journey so
far has been a painful one, with many disappoint-
ments along the way. The traditional telco equip-
ment vendors, faced with a massive reduction in

hardware revenues, understandably dragged their
feet and exploited their power of incumbency to
pressurize customers to purchase “full stack” NFV
solutions. These NFV siloes are typically not open
to third-party VNFs, so this approach to NFV in-
creases vendor lock-in, the precise opposite of
what was intended by the original architects of
NFV. Those network operators who were coura-
geous enough to insist on deploying a vendor-neu-
tral infrastructure found that many VNF vendors
struggled to on-board their products, which often
delivered poor performance and consumed ex-
cessive hardware resources when deployed. And
whichever approach was taken to NFV infrastruc-
ture, the Opex savings promised by operations
automation have proved elusive – mostly because
the VNFs were simply ported from proprietary
hardware with their traditional Command Line In-
terfaces, and are manifestly unsuited for any use-
ful degree of automation.

It’s not all bad news, of course. There’s no ques-
tion that at least some network operators have
been able to drive down Capex by negotiating ag-
gressively on the prices of VNF software licenses,
and the elimination of end-of-life events for phys-
ical network functions will unquestionably bring
further cost benefits in the medium to long term.
Nevertheless, most network operators now un-
derstand that there’s potentially far more to NFV
than these relatively meagre benefits, if NFV is ap-
proached in the right way. And that “right way” is
cloud native.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 5

What Cloud Native
Looks Like
It is not the intention here to describe the detailed
technicalities of cloud native network function
(CNF) architecture and design, but rather to focus
on what a cloud native approach to network func-
tion virtualization delivers and how this differs
from a software appliance view of the world.

Readers who wish to gain more insight into the technicali-
ties of cloud native should refer to our white paper “Cloud
Native Network Functions: Design, Architecture and Tech-
nology Landscape.”

In this section, we will compare and contrast the experi-
ence of working with VNFs and CNFs across the full range of
life-cycle management activities. We will use the following
definitions:

•	 PNF refers to a physical network function.
•	 VNF refers to a virtualized network function designed

the traditional way, that is as a software appliance, often
ported from a physical network function, and deployed
as a Virtual Machine.

•	 CNF refers to a cloud native network function, designed
from the ground up to be deployed in the cloud, typi-
cally based on stateless processing elements combined
with separate state stores, and offering scale out capa-
bilities with N+k redundancy for resilience.

A CNF will usually be delivered packaged in containers that
are designed to be deployed and managed by Kubernetes.
This type of application packaging has proven to be ex-
tremely portable, and a CNF should just come up and run
on any standard Containers-as-a-Service infrastructure that
embodies Kubernetes. This includes commercial distribu-
tions intended for building private clouds such as Red Hat
OpenShift or VMware Pivotal Container Service, as well as

On-Boarding

public clouds including Azure Containers, Am-
azon EKS, Google Kubernetes Engine and IBM
Cloud Kubernetes Service.

Some CNFs, especially those that perform user
plane processing, will be designed to expose
multiple network interfaces, and may also be
designed to leverage hardware acceleration
technologies such as SR-IOV. These require
specific versions of Kubernetes that may not
be widely supported in public cloud services,
but which are supported in commercial dis-
tributions of Kubernetes platforms for private
clouds. Although slightly more demanding in
their requirements, these kinds of CNFs should
still just come up and run on these platforms,
without the need for specialist tweaking of de-
tailed low level configuration or modification
of the software.

By contrast, many VNFs have complex depen-
dencies on specific drivers, OS or middleware
capabilities and even specific hardware func-
tionalities. They typically don’t “just run” on
any arbitrary generic cloud platform, and it
may take a vendor weeks of effort from special-
ists to successfully stand up a VNF on a given
NFV infrastructure.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 6

From the point of view of IT integration, a VNF of-
ten looks identical to the PNF that it is replacing.
In this case IT integration may be trivial, because
essentially nothing has changed.

A CNF is a fundamentally different thing to man-
age. Instead of the software equivalent of a “box”,
a CNF is a system that consists of a dynamic and
varying population of software instances of vari-
ous kinds that work together cooperatively to de-
liver the service that is required.

There are two possible approaches for managing
CNFs. One is to build a software wrapper around
the CNF as a whole that makes it look like a box.
This wrapper is responsible, for example, for col-
lecting metrics from the population of container
instances that make up the CNF and aggregating
them for presentation to the OSS. This approach
has the advantage of leveraging existing OSS in-
vestments, but by treating the CNF as a box it fails
to provide useful insights into what is going on un-
der the covers.

The other approach is to embrace the open source
cloud native software ecosystem, which offers nu-
merous tools for managing cloud native applica-
tions, for example:
•	 Prometheus – for collecting metrics and stor-

ing in a time series database
•	 Grafana – visualization tool for building dash-

boards, based on data stored by Prometheus
•	 Fluentd – unified logging layer for collection,

storage and analysis of logs

These powerful tools, which are very widely used
by Web-scale operators, make it quick and easy to
put together solutions for managing CNFs that re-
spect the essential nature of cloud native applica-
tions. They should be considered as the basis of a
cloud native approach to next-generation OSS.
There is no one right answer for managing any giv-

OSS/BSS Integration en CNF: the pragmatic solution is actually to blend
aspects of the two approaches described here so
as to best meet the needs of service management
in the most cost-effective and timely manner.

The deployment process for a network function
consists of two main steps: instantiating the soft-
ware on the cloud infrastructure, and injecting
“day zero” configuration which is required to get
the software running.

You typically deploy CNFs with the aid of Helm
chart. This is a document that specifies the de-
sired state of the application deployment, for ex-
ample which container images to instantiate and
how many of each to deploy. It also specifies the
required network connectivity and the network
policy that should be applied to each container
workload.

CNFs require an absolute minimum of day zero
configuration to come up and start running. IP ad-
dresses are automatically assigned to the default
network interface of each container, and contain-
ers that need to talk to each other discover the
relevant IP addresses via DNS or some more ad-
vanced technique such as a service mesh. Note
that you can also hard-assign specific IP addresses
to containers where this is a fundamental require-
ment for service delivery.

You can automate the deployment of VNFs to some
degree, for example in an OpenStack environment
with Heat templates. However it is rare for VNFs
to support automated network address assign-
ment, and a tedious process of manual IP address
assignment is typically required. VNFs also don’t
typically have any service discovery mechanisms,
so to the extent that different components of a VNF
need to talk to each other, you have to configure
the relevant IP addresses for such communica-
tions on each and every instance.

Deployment

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 7

Most complex network functions offer numerous
options that must be configured appropriately for
the network function to properly fulfil its mission
in the network.

Configuration of a CNF is document-driven. You
capture the desired configuration in a document,
typically in YAML or similar format, and you main-
tain this document in a standard version-controlled
repository, typically based on Git. When you com-
mit a change to this document, it is automatically
applied to the CNF as a whole. This means that all
running container instances that comprise the CNF
have their configuration updated automatically.
If there is a problem with the configuration change,
you can roll it back simply by reverting to the earli-
er version of the config doc in the Git repository. All
configuration changes are tracked, and the version
control audit trail provided by Git enables anyone
to see who made what changes and when. This
approach is known as “configuration-as-code”.

In more advanced CNF setups, you can subject
configuration changes to “canary testing”. This in-
volves applying the config changes to some specif-
ic subset of the CNF’s container instances and ver-
ifying that they are operating as expected before
rolling out the change to the entire CNF.

Configuration Management By contrast, you generally configure VNFs by per-
forming operations on individual VNF instances via
a Command Line Interface, following a MOP (Meth-
od of Procedure). You often have to perform this
manually, by typing commands. Effort may be re-
duced by pre-scripting a sequence of commands,
and cutting and pasting script fragments into a CLI
console. You have to separately configure each
instance of a VNF that supports a particular ser-
vice. It hardly needs to be said that this process
is time-consuming and error-prone. In many net-
works, the majority of network outages are caused
by mis-applied configuration changes. To back
out a mis-applied configuration change, you typi-
cally have to type in a series of commands to over-
write the bad config with the previous good config.

If VNF configuration changes are expected to be
frequent, it is sometimes worth the effort to auto-
mate these. Some VNFs expose APIs that support
programmatic configuration update. To leverage
these APIs to automate configuration changes,
you need to develop additional software that can
call the APIs, and that can track the changes that
have been made.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 8

Software and hardware failures will occur from
time to time, and both CNFs and VNFs will incor-
porate mechanisms to ensure that the service they
support continues to be delivered following such
failures without any unacceptable interruption or
degradation. Healing refers to all of the support-
ing processes that ensure that the system is main-
tained in its normal resilient state.

When comparing the healing aspects of CNFs and
VNFs, it is useful to invoke the “cattle vs pets” anal-
ogy. A CNF is like a herd of cattle: an undifferentiat-
ed population of instances that collectively provide
some service, where the health of any individual
instance has little bearing on the overall output of
the herd. When an individual container instance in
a CNF is misbehaving in any way, we simply kill it
and instantiate a new one. Kubernetes automates
this process in a very straightforward way.

By contrast, a VNF is like a pet. You care deeply
about the health of each individual VNF instance,
which is usually protected against complete failure
by a paired standby instance. When a VNF reports
an issue, for example by emitting an alarm, you
may well attempt to get the VNF back into a good
state by performing a variety of manual proce-
dures on it. If a VNF instance fails completely, the

Healing

The cattle vs pets analogy is also useful for com-
paring and contrasting CNFs and VNFs as it relates
to scaling.

If you want more milk, you simply add some ex-
tra cattle to your herd. Likewise, if you want more
capacity out of your CNF, you simply instantiate
more containers. Kubernetes can take care of this
automatically. When new container instances are
brought up, they obtain IP addresses automati-
cally and they discover other instances that they
need to communicate with automatically. They
also automatically inherit their configuration from
the current version of the config document stored
in the repository. In other words, scaling is a trivial
operation. And an individual CNF may scale very
large indeed: to tens of millions of subscribers if
required.

It’s perhaps worth pointing out that CNFs are typ-
ically composed from multiple microservices. Ku-
bernetes monitors the load on each microservice
and can scale each of them independently accord-
ing to demand. This ensures optimum use of hard-
ware resources at all times.

Scaling

The process for applying software upgrades to
CNFs is straightforward and invariably highly auto-
mated. In general, it involves progressively adding
new container instances at the up-level software
version to the “herd” while turning down instances
that are running the old version. Even with mas-
sive systems serving millions of subscribers, this
can usually be completed in a small number of
hours and is a completely hands-off and non-ser-

Software Upgrade

The process for applying software
upgrades to CNFs is straightforward and
invariably highly automated.

service will be protected by the backup instance,
but it is still necessary to restore the failed instance
in order to return the system to its normal resilient
state. This may require a complex, multi-step pro-
cedure to bring the failed VNF instance back to life.
Automating these operations is usually far from
easy.

It’s perhaps worth pointing out that the resiliency
model for CNFs is invariably N+k whereas for VNFs
it is usually 1+1. Consequently, CNFs tend to con-
sume a lot less compute resource than VNFs.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 9

vice-affecting operation. As with configuration
changes, software upgrades can be canary tested
by upgrading a small proportion of the running in-
stances and monitoring KPIs to verify that the ser-
vice is continuing to operate correctly, before roll-
ing out the upgrade to the rest of the population.
It is worth pointing out that CNFs are generally
composed of multiple microservice components,
and it is usual to apply software upgrades to one
microservice at a time. The APIs exposed by mi-
croservices are always versioned and designed to
be forward and backward compatible. This allows
for major upgrades that affect multiple microser-
vices to be applied in steps, one microservice at a
time, without any disruption.

Because it is so easy to apply software upgrades
to CNFs, it is common practice to implement agile
principles and deploy frequent incremental im-
provements to the CNF software. The process of
progressing software upgrades from development
through automated testing and into production, so
called “DevOps”, can be automated to a very large
extent. This can radically improve innovation ve-
locity and reduce the burden of pre-upgrade sys-
tem testing.

Upgrading VNF software is not nearly so straight-
forward. VNFs are typically based on large, mono-
lithic software architectures with long release
cycles. Each new release contains a great deal of
new function and carries with it the risk of desta-
bilizing the service provided by the VNF, so a long
and comprehensive testing process is needed be-
fore rolling out. And applying software upgrades
to VNFs usually requires complex procedures to be
applied to one VNF instance at a time with multi-
ple CLI-driven steps that can be very hard to auto-
mate. It can take many months to roll out a VNF
software upgrade in a large network.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 10

It should be clear from the previous section that the positive impact of moving from VNF to
CNF is far, far greater than moving from PNF to VNF.

The Cloud Native Dilemma

Many network operators have understood this,
and have made strong statements to the effect
that they intend to move as quickly as possible to
a cloud native approach to NFV. So why has there
been so little progress to date in adopting cloud
native practices in NFV?

The answer lies in two key realities:
•	 Real-world network functions are extreme-

ly complex, mainly because they have been
evolving for many years in response to thou-
sands of detailed technical requirements from
network operators. A typical network function
deployed in the network today includes multi-
ple million lines of code, and has been in con-
tinuous development for 15 to 20 years.

•	 Cloud native software architecture differs so
fundamentally from traditional software appli-
ance architecture that it is not feasible, in prac-
tice, to re-factor existing software so as to em-
body cloud native principles. In other words,
CNFs have to be developed from scratch, and
cannot be evolved from legacy codebases.

Building a CNF from scratch to achieve full feature
parity with the equivalent PNF or VNF requires a
massive investment in both time and resources.
Vendors who already have an equivalent VNF in
their portfolio have little incentive to make this in-
vestment. None of their competitors has a CNF, so

network operators have little choice but to deploy
one of the available VNF products – no matter how
strongly they may desire to pursue a cloud native
NFV strategy.

Moving to cloud native is a discontinuity. There’s
no way around that. Network operators who are
truly convinced that cloud native is the future need
to plan for that discontinuity. This is going to be
hard; incumbent vendors are promising an “evolu-
tionary” path to cloud native, which sounds much
less painful – but they aren’t going to get there any
time soon, if ever.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 11

The almost universal recognition among network
operators that cloud native is the right way to
do NFV has persuaded all of the traditional telco
equipment vendors to “cloud native wash” their
VNF portfolio. Without exception, these vendors
are claiming their products are cloud native to-
day. But taking a VNF, built using software ported
from a PNF, and packaging it in a container, does
not make it a CNF. Nor does the simple addition
of HTTP-based APIs to a VNF to support a ser-
vice-based architecture make it a CNF. To re-iter-
ate, the characteristics of a true CNF are as follows:
 
•	 A dynamically scalable, N+k redundant system

based on a collection of loosely-coupled mi-
croservices.

•	 Packaged in containers and deployable with-
out modification on any standard Contain-
ers-as-a-Service cloud infrastructure.

•	 Orchestrated by Kubernetes and leveraging
key components of the cloud native software
ecosystem including Helm (deployment), Pro-
metheus (metrics collection) and Fluentd (log
collection).

•	 Document-driven configuration management.
•	 Absence of Command Line Interface; all exter-

nal interactions with the CNF are via open Web
Services APIs.

Any network function product that does not exhib-
it these characteristics has no right to call itself a
CNF, and will not deliver on the promise of cloud
native that we described above. And the only
way for a network function to embody all of these
characteristics is for it to have been built, from the
ground up, according to cloud native architectur-
al principles. There’s not a single commercially
available network function on the market today
that can claim to have done this, apart from Metas-
witch’s Clearwater IMS product.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 12

Path to the Cloud
Native Telco
We have to face the fact that the cloud native approach rep-
resents a clean break with the past. There is no incremen-
tal way to get there based on solutions being offered by in-
cumbent vendors. So we have to find a way to embrace the
inevitable discontinuity that will be involved. The obvious
time to do this is during an upcoming investment cycle in
new network technology. The 5G mobile packet core is an
excellent example:
•	 The timing is good. Many network operators plan to

put standalone 5G into production in the 2021-22 time-
frame, at which point the cloud native software ecosys-
tem will have matured nicely.

•	 The technology fit is good. The 3GPP standards for the
5G core define a service-based architecture, which is a
pre-requisite for a cloud native approach.

•	 The vendor landscape looks promising. There are a
handful of challenger vendors developing 5G core prod-
ucts, at least some of whom have some real understand-
ing of cloud native.

The 5G mobile packet core is also a network function that
truly cries out for a cloud native approach. In particular, the
concept of network slicing requires the ability to automat-
ically deploy instances of mobile packet core components
rapidly and at widely varying levels of scale, in both core
and edge clouds. This mission can only be achieved cost-ef-
fectively with a true cloud native approach. We envision the
path to a true cloud native 5G core as follows.

With planning input from the network opera-
tor, the selected vendor(s) would work accord-
ing to agile development principles to deliver a
series of incremental software releases into the
network operator’s labs, progressively fleshing
out the solution to meet the operator’s spe-
cific requirements. While this is progressing,
vendors would work consultatively with the
network operator to refine the cloud native
infrastructure design and to flesh out the plan
for operations management of the cloud na-
tive 5G core. During this process, the network
operator would have an excellent opportunity
to learn about cloud native and its operation-
al practices at first hand. Vendors that fail to
maintain an acceptable velocity of functional
enhancements to their CNF would be eliminat-
ed from the process.

Consulative, Agile Co-Development Process

The traditional procurement process based on RFPs is not
a good way to set out on the path to cloud native. It tends
to focus on vendor willingness to promise to meet a vast
number of detailed functional requirements within a strict
timescale at the lowest initial cost rather than focusing on
what is really critical here: the ability of the vendor to deliv-
er truly cloud native solutions cost-effectively and in a time-

Agile Procurement Process

ly and agile manner. We advocate a process
where a small number of qualified vendors are
invited to participate in hands-on lab trials of
their cloud native technologies. During this
process, vendors who fail to demonstrate con-
vincing cloud native capabilities are progres-
sively eliminated.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 13

The network operator’s investment in any given
vendor relationship during this process is strictly
limited, at least during the early stages. If a rela-
tionship is not working to the benefit of both par-
ties, it can be terminated with minimal damage.
This is in contrast to the traditional procurement
approach, where the network operator has so
much invested in the relationship with the select-
ed vendor that it cannot afford to fail, even when
things are going badly wrong. In the case of 5G
core, the network operator always has the option
of falling back on the incumbent EPC vendor and
their evolutionary solution for 5G core.

Fast Fail

The biggest challenge in taking the direct path to
cloud native is the need for the CNF to provide an
acceptable level of functional capability to meet
operational and service requirements for a given
use case, and the time and investment required
to get there – bearing in mind that the CNF is be-
ing developed from scratch. There is a tendency
on the part of network operators to demand a vast
number of functional capabilities to satisfy mar-
ginal needs, many of which can be characterized
as “we’ve always done it this way.” Network oper-
ators should be prepared to re-examine assump-
tions about the capabilities that are truly essential
for any given use case, and be prepared to make
compromises. In other words, “don’t let the per-
fect be the enemy of the good.”

Minimum Viable Product

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 14

Who Dares Wins
Unlike the simple virtualization of network functions in the form of software
appliances deployed in virtual machines, the cloud native approach is truly
transformative. Fully automated life-cycle management of network functions,
instant deployment of 5G core network slices at any scale, management of
configuration as code, portability across private and public cloud stacks, and
DevOps-style continuous innovation will together bring stunning improvements
in network operations efficiency and customer-facing responsiveness. That is
the promise of the cloud native approach to NFV. Network operators who have
the courage to embrace cloud native, and do so successfully, will surely emerge
as the winners of the future.

But network operators should be under no illusions as to the true nature of
cloud native, and the degree to which it represents a discontinuity. Those who
prefer to stay stuck in the rut of comfortable incumbent vendor relationships
will simply not get there. Only those who are prepared to grasp the nettle, face
their fear of the unknown and embrace the discontinuity implied by cloud na-
tive will make it. They may actually be very pleasantly surprised along the way
to find out how easy cloud native can be. Certainly very different. And much,
much better.

