
November 2019

Cloud Native Network
Functions
Design, Architecture and Technology Landscape

 www.metaswitch.com © 2019 Metaswitch Networks. All Rights Reserved

Introduction

A Brief History of Virtualization and Cloud

The Emergence of Cloud Native

The Cloud Native Software Ecosystem

The Key Features of Cloud Native Application Architecture
Stateless Processing
Microservices
Containers
Design for Automation

Building Cloud Native Network Functions
Cloud Native Control Plane Functions
Cloud Native Data Plane Functions
Declarative Configuration of NFs

Deployment Environment for Cloud Native Network Functions

Testing Cloud Native Claims
No Evolution Path from VNF to CNF
The Cloud Native Scorecard

Conclusion

3

4

5

6

7

9
10
12

14

16

17

18

21

Contents

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 3

There is broad consensus in the industry that Networks Functions Virtualization, as defined
in the original white paper published by 13 telcos in October 2012, has largely failed to de-
liver on its promises of substantial Opex and Capex reductions, together with rapid acceler-
ation of innovation in network services and operations.

Introduction

There is also broad consensus about the main rea-
son for this failure. The white paper described a
vision in which physical boxes are replaced by
software appliances designed to run on commodi-
ty hardware in a virtualized environment. This en-
couraged vendors to port the software from their
proprietary systems onto commodity hardware,
but to make no other fundamental changes, for
example to make it easy to automate operations
—so Opex savings are not easily achieved. Not be-
ing designed from scratch to run on commodity
hardware, the software often performs poorly, and
consumes excessive hardware resources—making
it difficult to achieve useful Capex savings. And the
monolithic architecture of this legacy software suf-
fers from the same long release cycles and heavy
testing burden as the physical boxes it replaced, so
innovation proceeds at the same glacial pace as it
always has.

Not only does the industry broadly agree on the
reasons for the failure of NFV to date, it also agrees
about the right way forward. This is to build net-
work functions as software systems designed from
the ground up for the cloud, in the same way as the
big Web-scale players would approach the prob-
lem: the so-called cloud native approach.

Agreement on this point is so universal that every
vendor of network function software now claims
that its NF products are cloud native: CNFs (Cloud
Native Network Functions) rather than VNFs. The
great majority of these claims are highly suspect.
Squeezing a monolithic stateful legacy VNF into a
container does not make it a CNF. Nor does bolt-
ing on a Web Services API. The benefits of a cloud
native approach to network functions derive from
a number of absolutely fundamental differences in
software architecture between legacy and cloud
native. These differences are so great that it’s not
technically or economically feasible to evolve a
legacy VNF to become a CNF. In other words, to
build a CNF, you have to start from scratch.

But what exactly are these differences? What tru-
ly distinguishes a CNF from a VNF? These are the
questions that this white paper explores in depth.

This paper focuses on the technical aspects of
CNFs: design, architecture and technology land-
scape. Readers who would like to understand
more about what it’s like to work with CNFs ver-
sus VNFs from an operations standpoint, why the
cloud native approach is so superior, and how to
make a successful transition from VNFs to CNFs,
are encouraged to read our white paper “The
Cloud Native Telco.”

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 4

A Brief History of
Virtualization and Cloud
Virtualization has a long history in the computer in-
dustry, and first became a mainstream commercial
technology in the mid-1960s on IBM mainframes.

The modern era of virtualization was ushered in by the ad-
dition of hardware support for virtualization on x86 proces-
sors by Intel in 2005-06, which paved the way for the intro-
duction of successful hypervisor products such as VMware.
Up to this point, IT shops had installed a separate physical
machine for each different server application that they de-
ployed, with the result that most machines were severely
under-utilized. With a hypervisor they could safely deploy
multiple server applications per host, consolidating their
resources and achieving very substantial Capex and Opex
savings.

At that time, it was common to see a mix of many different
operating systems in use for IT applications: various flavors
of Unix, Solaris, Windows and early versions of Linux. Natu-
rally, there was a requirement to be able to mix applications
with different operating systems on the same physical host.
So hypervisors were designed to expose to applications an
emulation of a complete physical x86 server: a virtual ma-
chine. The server application, together with the operating
system it depends on, runs inside the virtual machine, safe-
ly and securely partitioned from other server applications
and their supporting guest operating systems deployed on
the same host.

The business case for virtualization was a compelling one,
and by 2013 more than half of all IT workloads were run-
ning virtualized. IT shops began to view their physical serv-
ers not so much as a collection of individual machines, but
more as a pool of computing resources. When they deploy
a server application, they don’t much care which particular
machine it runs on, so long as it has sufficient resources to
perform as required. This is led to the introduction of in-

frastructure software solutions that treat a col-
lection of x86 machines as an interchangeable
pool of resources, and manage the deployment
of applications on it: a cloud.

Cloud technology enables compute resources
to be treated as a utility, and this opens up the
possibility of a market in which compute pow-
er can be bought and sold: the public cloud.
Economies of scale mean that very large pro-
viders of public cloud services can offer com-
pute power at considerably lower cost than
can be achieved in small-scale private clouds.
As a result, some IT shops now choose to de-
ploy some or all of their applications on public
cloud services.

For most of the first decade of cloud technolo-
gy, the great majority of applications deployed
in both public and private clouds were original-
ly written to run on dedicated, bare metal serv-
ers. Cloud services offering virtual machines
that emulate physical servers, so called Infra-
structure as a Service, provide an ideal envi-
ronment into which such applications can be
moved.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 5

The Emergence of Cloud Native

The availability of inexpensive pay-as-you-go com-
pute power in large-scale public clouds opened up
a completely new kind of opportunity for entrepre-
neurs: the ability to rapidly create and roll out net-
work-based services that could be offered to the
public at scale, particularly in the realms of social
media, messaging, media distribution, e-commerce
and the “gig economy”. In particular, it massively
reduced the amount of capital risk associated with
starting up and scaling such services.

The new ventures that set out to take advantage of
this opportunity were not writing software to run on
dedicated servers, and then deploying it on virtu-
al machines in the cloud. Instead, they viewed the
cloud as an entirely new kind of distributed comput-
ing environment that opened up exciting possibili-
ties for new application architectures.

What these cloud application developers sought,
above all, was scalability. They wanted to be able
to deploy systems that would scale rapidly through
many orders of magnitude with as few limitations
as possible, and without the requirement to re-vis-
it fundamental aspects of application architecture
along the way. They also wanted resilience and fault
tolerance; they recognized that failures can occur at
every level of the stack, from individual servers to
entire data centers, and from individual virtual ma-
chines to entire cloud instances, and they needed

to come up with software architectures that would
survive multiple such failures and continue to deliv-
er services. But they didn’t want to buy fault toler-
ance in the traditional way by doubling up resource
usage. Rather, they expected to absorb the impact of
failures through modest amounts of surplus capacity
combined with automated self-healing capabilities.

In addition to scalability and fault tolerance, cloud
application developers wanted to be able to evolve
their software solutions quickly to meet new and
emerging service requirements. In practice this
meant making it possible for multiple teams to work
on the software simultaneously without tripping over
each other, leading to the concept of decomposing
complex services into loosely-coupled components
that talk to each other through open, language-ag-
nostic APIs.

These were all difficult and challenging problems
to solve, but the successful pioneers in cloud-based
application development employed some of the
best brains in the software industry, and there was
a good deal of cooperation and sharing of learnings
among them. The design patterns of what came to
be known as cloud native software architecture have
emerged over the last few years as a consensus with-
in this community.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 6

The Cloud Native
Software Ecosystem
Open source software has played a very important
part in the emergence of the cloud native move-
ment, from two points of view:

Building blocks for rapid prototyping and creation of
cloud native applications.
For example, storage (Cassandra, MongoDB, etcd), security
(OpenSSL), APIs (gRPC, Thrift), message streaming (NATS,
Kafka), service mesh (Envoy, Istio, Linkerd)

Tools for automating, orchestrating and operationalizing
cloud native applications.
The primary example is Kubernetes which performs life-
cycle management of cloud native applications, but other
key projects include Prometheus (collection and storage of
metrics), Grafana (visualization tool for metrics), Fluentd
(collection and analysis of logs) and Helm (Kubernetes
package management).

Many of these open source projects are hosted by the Cloud
Native Computing Foundation (CNCF), a part of the Linux
Foundation. The CNCF defines cloud native as follows:

CNCF also publishes a very useful “trail map”
that provides guidance on best practices for
cloud native application development. CNFs
that do not substantially embody the practices
identified in this trail map have no right to call
themselves cloud native.

Cloud native technologies empower organizations
to build and run scalable applications in modern,
dynamic environments such as public, private,
and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and
declarative APIs exemplify this approach.
These techniques enable loosely coupled systems
that are resilient, manageable, and observable.
Combined with robust automation, they
allow engineers to make high-impact changes
frequently and predictably with minimal toil.

https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 7

The Key Features of Cloud Native
Application Architecture

The requirement for easy scaling across many or-
ders of magnitude is the driver behind the single
most important concept in cloud native architec-
ture: stateless processing.

The concept of stateless processing can be de-
scribed as follows. A transaction processing sys-
tem is divided into two tiers. One tier comprises a
variable number of identical transaction process-
ing elements that do not store any long-lasting
state. The other tier comprises a scalable storage
system based on a variable number of elements
that store state information securely and redun-
dantly. The transaction processing elements read
relevant state information from the state store as
required to process any given transaction, and if
any state information is updated in the course of
processing that transaction, they write the updat-
ed state back to the store.

Stateless Processing It’s probably not obvious from reading the de-
scription above how this approach enables mas-
sive scalability. So let’s use a practical example
to illustrate.

Suppose we are developing an e-commerce ap-
plication. The application needs to support a
number of HTTP transaction types including
login to account, add item to shopping basket,
review shopping basket, checkout etc. The ap-
plication code that processes these transactions
needs access to certain information (i.e. “state”),
for example details of the user’s account and the
current contents of the shopping basket. In a tra-
ditional application architecture, this state would
be kept in the application’s local storage.

The first problem that we need to solve is how to
provide fault tolerance. If a server dies, then any
local state that is stored in it is lost. The physical
servers that are deployed in cloud environments
are not particularly reliable, and failures are fairly
frequent. Users get pretty upset if they’ve spent
30 minutes online grocery shopping, and their
shopping basket suddenly disappears. We face
a difficult choice here: either we accept the risk
that a small proportion of e-commerce sessions
will fail due to equipment failure, or we have to
deploy a second server to act as a backup, and
maintain a shadow copy of all the state on it –
which doubles the amount of hardware resourc-
es the application is consuming.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 8

Now sppose that we need this application to sup-
port millions of concurrent online shopping ses-
sions. A single server (or active-standby pair of
servers) is not going to be able to handle the load,
so we need to deploy a number of servers. The
problem that we now need to solve is that each
incoming HTTP request needs to be directed to
the correct server, the one that knows about this
particular user and session. We therefore need to
deploy something like a load-balancer in front of
our collection of servers, and the load-balancer
needs to be able to identify the user and session
from the information in each incoming request,
remember which server is handling each user
session, and re-direct each request to the correct
server. The load-balancer is therefore quite a com-
plex application in its own right. And because it’s
potentially a single point of failure, it needs to be
fault tolerant, which makes it even more complex.
But the biggest single issue here is that the perfor-
mance and capacity of the load-balancer puts an
upper limit on the transaction processing load that
we can handle. What happens if our e-commerce
site is wildly successful and we cannot obtain a
load-balancer that is powerful enough to handle
all of the demand?

With the stateless processing approach, we imple-
ment the elements that process HTTP transactions
without any local state storage, and have them
read and write state to and from a separate storage
system. When an HTTP request arrives at one of
these elements, it extracts some information from
the request that uniquely identifies the session
(for example, from a cookie), and then uses this in-
formation to retrieve the current state associated
with this session (user account details, contents of
shopping basket) from the state store. If the trans-
action has the effect of changing any of this state,
for example because the user added an item to her
shopping basket, then the transaction processing
element writes the updated state back to the state
store.

The difference now is that any incoming HTTP re-
quest can be handled by any arbitrary instance of
the transaction processing element. We do not
have to steer each request to the instance that
“knows” about it, because knowledge about each
session is available to every processing element
instance from the state store. We still need some
way to balance the load of incoming requests
across the population of transaction processing
elements, but we can do this without having to
deploy a load-balancer, for example by leveraging
DNS to perform dumb round-robin load balancing.
By eliminating the load-balancer, we’ve eliminat-
ed the limiting factor on scale. We also don’t need
to worry about any individual transaction process-
ing element failing. Such failures do not result in
the loss of any state, because all the state is stored
separately.

The stateless approach is therefore inherently
fault tolerant. If any processing element instance
dies or becomes unresponsive, then the built-in re-
try mechanisms of HTTP will result in subsequent
attempts being handled by another instance. So
long as we have a modest amount of performance
headroom in our population of processing ele-
ments, the failure of any one of them has no im-
pact on the service: the load that it would other-
wise have handled is simply re-distributed across
the remaining instances. We can very easily ex-
tend this fault tolerance mechanism across multi-
ple data centers, so that even the loss of an entire
data center will not bring down our service.

With the stateless processing approach,
we implement the elements that process

HTTP transactions without any local state
storage, and have them read and write

state to and from a separate
storage system.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 9

Individual processing elements can be quite small
in scale: we can keep the architecture of these
elements simple by not worrying about trying to
make them very powerful, for example with sup-
port for lots of multi-core parallelism. We handle
scaling by deploying as many processing element
instances as we need to handle the load, an ap-
proach which is known as “scale out” (in contrast
to “scale up”, which involves deploying bigger
server instances). We can also change the number
of processing elements on the fly (scaling both out
and in) in response to changing load – enabling us
to make the most efficient use of compute resourc-
es at all times.

All of this depends, of course, on our ability to
build and deploy a highly scalable and very
fault-tolerant storage system in which to keep all
of our application state. Because this is an abso-
lutely fundamental requirement of the stateless
processing design pattern, there has been a lot of
investment in this area, particularly by the main
Web-scale players. Many of the solutions that
they have built to address this need are available
as open source. For example, one of the leading
distributed state stores, Apache Cassandra, was
originally developed at Facebook, and is now used
by Netflix, Twitter, Instagram and Webex among
many others. Test results published by Netflix
show Cassandra performance scaling linearly with
number of nodes up to 300, and handling over a
million writes per second with 3-way redundancy –
more than enough to handle the needs of most tel-
co-style services even with many hundreds of mil-
lions of subscribers. Cassandra includes support
for efficient state replication between geographi-
cally separate locations, and therefore provides an
excellent basis for extremely resilient geo-redun-
dant services.

It’s perhaps worth pointing out that stateless pro-
cessing is by no means the only design pattern
seen in cloud native applications, although it’s

After stateless processing, the second most
frequently cited aspect of the cloud native
approach to software design is microservices,
defined as follows:

Microservices

definitely the most prominent. Other design pat-
terns worth mentioning include stream processing
(based on frameworks such as Heron or Storm)
and serverless processing, best exemplified by
Amazon Lambda. These have only emerged rela-
tively recently, and won’t be discussed further in
this document – but they definitely have potential
to advance the state of the art in CNF design.

Microservices is a software architecture
style in which complex applications

are composed of small, independent
processes communicating with each other

using language-agnostic APIs. These
services are highly decoupled and focus on

doing a single small task well, facilitating
a modular approach to system-building.

Microservices is a big topic: entire books have
been written about it, and we only have room for a
brief summary here. The main benefits of a micro-
services approach are as follows:

Composability and reusability
Microservices encourages the development of
modular software components, each of which
performs a very specific task that is exposed via
an open and well-documented API. Components
built this way lend themselves to easy re-use in a
variety of different circumstances, enabling appli-
cations to be “composed” by combining a suitable
set of microservices glued together by a light-
weight front end.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 10

Technology heterogeneity
Microservices enables development teams to pick
the best software technology and language for the
implementation of any given application compo-
nent, without worrying about the rest of the sys-
tem. Components are loosely-coupled, typically
via HTTP or messaging APIs, and this hides their
implementation details.

Efficient scaling
Each microservice can be designed to scale out
independently of other microservices associated
with a given application, which typically means
we get more efficient use of resources than with
monolithic applications where all functions have
to scale in lockstep.

Ease of development and deployment
It’s possible to make incremental enhancements to
individual microservices and deploy these to pro-
duction independently of other microservices. If
any problems arise from the new version of a given
microservices component, the change can quickly
be rolled back. This allows for a DevOps approach
to the progressive enhancement of an overall ap-
plication, enabling innovations to be introduced
much more rapidly than with monolithic applica-
tions which inevitably accumulate many changes
between releases, requiring far more comprehen-
sive testing.

Those with a long history in software may be
tempted to dismiss microservices as just a new la-
bel for Service-Oriented Architecture (SOA), which
has been around for many years. There are, of
course, many similarities and some practitioners
talk about microservices as “fine-grained SOA”.
The main difference from SOA is the size and
scope of the service components: making them
fine-grained improves composability, reusability
and ease of deployment. Making them too fine-

grained may introduce unacceptable inefficiency
in the application, so getting the balance right is
important.

The microservices approach is not a panacea.
Highly distributed loosely-coupled systems bring
their own complications, and the complexity of a
large application does not disappear just because
it is reduced to a set of relatively simple compo-
nents. Nevertheless, most of the Web-scale play-
ers are strongly bought into microservices, none
more so than Netflix. Following a disastrous out-
age in 2008, Netflix started transitioning away from
a single monolithic Web application, and has now
deployed in excess of 500 microservices to sup-
port their Web presence and business operations.
Netflix has blogged extensively about its microser-
vices journey, and this material is essential reading
for anyone wanting to get under the skin of this ap-
proach to system design.

In the discussion above on the history of virtual-
ization, we described the hypervisor and its sup-
port for the deployment of application software in
virtual machines. But there is an alternative and
more recent approach to virtualization that hap-
pens to be particularly well-suited to cloud native
applications: Linux containers. In fact containers
are now considered indispensable for cloud native
applications.

Containers leverage a long-standing method for
partitioning in Linux known as “namespaces”,
which provides separation of different processes,
filesystems and network stacks. A container is a
secure partition based on namespaces in which
one or more Linux processes run, supported by the
Linux kernel installed on the host system.

Containers

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 11

The main difference between a container and a vir-
tual machine is that a virtual machine needs a com-
plete operating system installed in it to support
the application, whereas a container only needs
to package up the application software, with the
optional addition of any application-specific OS
dependencies, and leverages the operating system
kernel running on the host. Containers rely only
on the Linux kernel API which is extremely stable,
and identical across different distributions of Li-
nux. This helps to make containers very portable.
Containers offer a number of advantages over vir-
tual machines, including the following:

Lower overhead
Because they do not (in most cases) contain com-
plete operating system images, containers have
a far smaller memory footprint than virtual ma-
chines, and therefore consume considerably less
hardware resources. Their small footprint may
make it feasible to deploy instances of software
to serve single tenants for some kinds of services,
and this could simplify the design of the software
very considerably.

Startup speed
Virtual machine images are large because they
include a complete guest operating system, and
the time taken to start a new VM is largely dictated
by the time taken to copy its image to the host on
which it is to run, which may take many seconds
– or even minutes. By contrast, container images
tend to be very small, and they can often start up
in less than 50 ms. This enables cloud native ap-
plications to scale and heal extremely quickly, and
also allows for new approaches to system design
in which containers are spawned to process indi-
vidual transactions, and are disposed of as soon as
the transaction is complete – an approach which
has come to be known as “serverless”.

Reduced maintenance
Virtual machines contain guest operating systems,
and these must be maintained, for example to
apply security patches to protect against recently
discovered vulnerabilities. Containers require no
equivalent maintenance.

Ease of deployment
Containers provide a high degree of portability
across operating environments, making it easy to
move a containerized application from develop-
ment through testing into production without hav-
ing to make any changes along the way. Further-
more, containers allow workloads to be moved
easily between private and public cloud environ-
ments. Being much more straightforward to de-
ploy in the cloud than virtual machines, they are
also much easier to orchestrate.

Portability
Applications packaged as containers are highly
portable, both across development, testing and
production environments, and between differ-
ent private and public cloud environments. This
massively simplifies and speeds up on-boarding of
applications compared with VM-based software. It
also makes it easy to put in place Continuous In-
tegration / Continuous Deployment (CI/CD) pipe-
lines for acceleration of innovation, and to lever-
age public cloud services for testing, prototyping,
capacity bursting and disaster recovery, offering
significant savings in Capex and encouraging ex-
perimentation.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 12

Cloud native applications tend to comprise a
substantial number of different software com-
ponents, partly because they usually implement
stateless processing (and therefore have separate
components for transaction processing and state
storage), and partly because they are usually de-
composed into a number of microservices. Fur-
thermore, each microservice is designed to scale
out, and so multiple instances of each microser-
vice component need to be deployed to handle
the load on the application. For these reasons,
deploying a cloud native application at scale may
require the instantiation of many tens or hundreds
of containers.

It is totally infeasible to carry out the deployment
of such an application manually, so cloud native
applications are invariably orchestrated in some
way so as to automate the deployment process.
Likewise, orchestration is needed to automate op-
erations such as scaling of the different microser-
vices and healing failed instances because these
would be too complex and onerous to perform
manually.

With this in mind, the cloud native application de-
signer pays close attention to the requirements
of orchestration and operations automation right
from the outset. The main focus is on achieving
the simplest possible process for bringing up the
components of the application, mainly by mini-
mizing the amount of configuration that needs to
be injected into each component. The following
practices are commonly employed in cloud native
applications to keep things simple from an orches-
tration standpoint.

Design for Automation Automated IP address assignment
Cloud native application components invariably
use DHCP to obtain IP addresses, so the orches-
trator does not need to be involved in IP address
management. Note that IP addresses can also be
hard-assigned to CNF instances where this is nec-
essary.

Shared configuration stores
Cloud native application components invariably
participate in a shared distributed key-value store
from which they can obtain most or all of the
day-zero configuration they need without the or-
chestrator having to take responsibility for this.

Automated discovery
Cloud native application components typically
discover the peers with which they need to com-
municate either via a shared configuration store or
via DNS. Service meshes provide a more advanced
means of service discovery.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 13

Elimination of hard dependencies
Many inter-component dependencies typically
exist within a given cloud native application, but
the components are designed to be brought up in
any order. If one component depends on a micro-
service exposed by another component, and that
microservice is not yet available, then the com-
ponent will keep trying to connect to it until it be-
comes available.

In the early days of cloud native, a number of dif-
ferent solutions for orchestration, automation and
lifecycle management were available, but Kuber-
netes has emerged as far and away the most pop-
ular of these. Kubernetes supports deployment,
monitoring, healing, scaling and software upgrade
of containerized cloud native applications. Helm
provides a means to template the deployment
of complex Kubernetes applications in a declara-
tive manner (similar to Heat in OpenStack), while
Kubernetes Operators provides a framework for
extending the native lifecycle management logic
of Kubernetes to custom operations that may be
required for more complex cloud native microser-
vices, particularly stateful ones.

It is hard to overestimate the importance of Kuber-
netes to the cloud native movement. It shows up
in every private and public cloud environment on
which cloud native applications may be expected
to run, and is so universal now that, if an applica-
tion isn’t designed to be orchestrated by Kuberne-
tes, it can’t really be considered cloud native.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 14

Building Cloud Native
Network Functions
We’ve discussed cloud native software architec-
ture in the context of Web-scale applications such
as messaging, social media and e-commerce, all of
which are essentially transactional in nature.

 At this point, it is reasonable to ask the question: can these
techniques really be applied to the implementation of net-
work functions, given that these are somewhat different in
nature to Web-scale applications?

In considering how cloud native principles may be applied
to the development of NFs, we need to make a clear dis-
tinction between control plane functions and data plane (or
user plane) functions.

Control plane functions involve the exchange and process-
ing of messages. For example, routers exchange Border
Gateway Protocol messages to learn about the reachability
of IP address blocks, and subscribers exchange Session Ini-
tiation Protocol messages with an IP Multimedia Subsystem
in order to negotiate the establishment of a voice or video
session. These functions are transactional in exactly the
same sense as the Web-scale applications that we’ve used
as examples of cloud native architecture in action, and all of
the cloud native principles can be fully applied to their im-
plementation. Metaswitch’s cloud native IMS core solution,
Clearwater, is a good example of this.

Cloud Native Control Plane Functions

Data plane functions involve processing packets or packet
flows at various levels of the protocol stack. For example,
routers forward packets at the IP layer, and may also ma-
nipulate packets by terminating tunnels, inserting VLAN
tags and so on, while session border controllers forward
media packets at the application layer, and may perform

Cloud Native Data Plane Functions

various media processing functions such as
transcoding. It could possibly be argued that
a data plane function is transactional in the
sense that each incoming packet represents
a “transaction”. However, the work done on
each packet in a data plane function is typically
many orders of magnitude less than the work
done in processing a control plane transaction,
and simple economics requires us to process
many orders of magnitude more packets with
a given amount of compute resource com-
pared with control plane transactions. It is im-
practical to implement a stateless processing
model for data plane functions because there
is far too much overhead involved in fetching
the required state to process each packet from
a separate store. The state that we require to
process each packet must be locally resident in
the network function, in memory or (prefera-
bly) in the processor’s cache, in order for us to
process packets cost-effectively.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 15

State management
In the section above on stateless processing, we
explained that the stateless approach enables us
easily to scale out an application, and implement
fault tolerance with an active-active N+k redun-
dancy model. So if we can’t apply stateless pro-
cessing to data plane functions, does that mean
that we can’t build a scale-out, active-active N+k
data plane function? The answer to this is an em-
phatic no. By applying appropriate ingenuity in the
way we manage and store session and flow state,
and how we steer packet flows, we absolutely can
build data plane functions that scale out with ac-
tive-active N+k redundancy. For example, we can
divide the state information in any one data plane
instance into logical blocks or “shards”, and re-dis-
tribute these shards across the remaining popula-
tion of data plane instances when one fails, while
modifying the steering of flows to match, for exam-
ple by leveraging routing protocols or virtual MAC
addresses.

Data plane microservices and composability
The next topic we need to consider is whether it
makes sense to decompose data plane functions
into microservices. We can certainly imagine
defining any given data plane function as a
sequence of basic actions to be applied to each
packet (a packet processing graph), but does it make
sense to implement the function with a separate
software component for each basic action? The
answer to this question depends on exactly how
these components are combined together to
deliver the complete function. Implementing each
basic action as a separately deployable software
element in a container, and stringing them
together by means of Service Function Chaining
or some similar technique, may provide a great
deal of flexibility and composability, but it does
so at the expense of enormous inefficiency. This
is because the work done in the underlying fabric

to encapsulate and forward packets between
each node of the packet processing graph is likely
to be considerably greater than the work done
by the packet processing functions themselves.
On the other hand, if the software elements that
implement each of the basic actions can be
composed into a packet processing graph in the
context of a single engine, in which packets are
passed between components in memory, then we
have a “microservices” data plane solution that
combines composability nicely with efficiency.

This concept of a composable packet processing
engine in which multiple software components
that perform basic actions on packets are com-
bined into a single deployable element is gaining
currency in the industry. A good example of this
is FD.io, an open source packet processing engine,
hosted by the Linux Foundation. FD.io enables
complex packet processing pipelines to be com-
posed by stringing together code modules, each

A unique advantage of CNAP is its ability
to combine multiple logical packet header

processing operations into a single
composite lookup

of which handles some distinct aspect of packet
header processing.
Another good example is Metaswitch’s Compos-
able Network Application Processor, a proprietary
software packet processing engine. This takes a
very different approach to FD.io. Instead of build-
ing the packet processing pipeline by compiling
together a bunch of different code modules, CNAP
is entirely configuration-driven. You define the
packet processing pipeline you want, in terms of
a series of match-action classifier tables, in a YAML
document and CNAP uses this information to com-
pose the pipeline on the fly. A unique advantage
of CNAP is its ability to combine multiple logical

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 16

packet header processing operations into a single
composite lookup, enabling it to comprehensive-
ly out-perform all other software data plane solu-
tions in the market when applied to complex pipe-
lines such as the 5G User Plane Function.

Compatibility with containers and Kubernetes
High performance data plane NFs leverage a va-
riety of advanced techniques to achieve competi-
tive levels of performance and efficiency, including
CPU pinning, hugepage support and SR-IOV. Linux
containers have always been compatible with
these techniques, but until quite recently Kuber-
netes did not support them. Recent open source
add-ons to Kubernetes, such as the Multus project
contributed by Intel, have addressed this issue.
As a result, data plane CNFs can now be built that
deliver exactly the same level of performance as
software running on bare metal servers, while en-
joying all of the orchestration and operations au-
tomation benefits provided by Kubernetes.

Most real-world network functions offer hundreds
or thousands of configuration parameters that
control the detailed aspects of how the network
function operates. With traditional network func-
tion software, configuration is typically manipulat-
ed via a Command Line Interface. Configuration is
defined procedurally, by following a sequence of
steps towards a desired configuration state, either
via the CLI or via a sequence of API calls.

By contrast, the cloud native approach to config-
uration is declarative. The desired configuration
is described in full in a structured document and
made available to the CNF, which checks that the
requested configuration is internally consistent
before applying it. The configuration of a CNF is
maintained in a version-controlled repository (typ-
ically Git) so that all changes are tracked, and so
that the configuration of a CNF can be rolled back
to a known good version at any time.

Declarative Configuration of NFs

Furthermore, the configuration of VNFs is gener-
ally managed independently on each individual
VNF instance, whereas with CNFs configuration
can be managed globally, or on large subsets of a
CNF deployment. By checking in a change to a ver-
sion-controlled configuration document, the new
config is automatically applied to every relevant
component instance of the CNF.

The declarative approach to configuration pro-
vides far greater control over changes, reduces the
likelihood of bad configuration being injected into
the network, and greatly speeds up recovery when
and if this ever happens.

There has been some movement towards a declar-
ative approach to configuration for some kinds of
virtualized network functions with YANG. Never-
theless, procedural approaches to configuration
management still dominate the VNF world.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 17

In an ideal world, all the NFs we want to deploy would be truly cloud native, packaged in con-
tainers and orchestrated by Kubernetes. The ideal cloud infrastructure in this situation would
be a native container environment such as Red Hat OpenShift or VMware PKS, running directly
on bare metal servers.

Deployment Environment for Cloud
Native Network Functions

The reality, however, is that any cloud infrastruc-
ture being built to support the deployment of NFs
needs to be able to support both legacy VNFs,
packaged in virtual machines, and CNFs packaged
in containers – at least for the foreseeable future.
Currently, the accepted way of achieving this is
to deploy a Kubernetes container environment,
such as Red Hat OpenShift or VMware PKS, on top
of a hypervisor-based virtualization environment
such as OpenStack or VMware vSphere. To do this,
you use the OpenStack or vSphere layer to create
a pool of virtual machines, and then deploy your
Kubernetes cluster supporting your CNFs into that
pool.

While this layering may sound inefficient, it works
perfectly well in practice. The only downside is
that it involves wrestling with two different lay-
ers of application orchestration. The CNFs will be
orchestrated by Kubernetes, while each VNF will
have its own lifecycle manager, typically a Specific
VNFM as defined by ETSI.

An intriguing new technology called Kubevirt may
provide an elegant solution to this problem in the
future. Kubevirt enables any VM-based application
to be deployed inside a container and orchestrat-
ed by Kubernetes. Once the majority of our NFs
are cloud native, Kubevirt may enable us to simpli-

fy our cloud environments by eliminating the hy-
pervisor layer while still being able to deploy and
manage legacy VM-based VNFs. All orchestration
is then performed by Kubernetes

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 18

Testing Cloud Native
Claims
By comparison to the traditional approach to NFV based on
VNFs, deploying and operationalizing CNFs is vastly easier
and provides a far clearer path to realizing the promised
benefits of NFV including substantial Opex and Capex reduc-
tions, and rapid acceleration of innovation. Consequently,
there is a strong temptation for vendors to re-position their
VNF products as CNFs, without much regard for observing
the cloud native principles we have described. Network
operators therefore need to be very wary of claims being
made by vendors that their NF products are cloud native.

In general, it is extremely difficult to refactor monolithic,
stateful, legacy network function software so as to embody
the key architectural aspects of cloud native that are essen-
tial to the delivery of cloud native benefits. The main rea-
sons for this are as follows:

State is inextricably tied into the code
In traditional application architectures, all state is stored
locally and elements of state are accessed or updated by
individual instructions throughout the body of the code.
Unpicking this so as to read all relevant long-lived state
from a separate store and to update that store at the rel-
evant points in the processing of any given event is huge-
ly labor-intensive, and in most cases represents an almost
complete re-write of the code.

Monolithic applications are hard to de-compose
While legacy codebases typically show a high degree of
modularity in the form of function calls and subroutines,
these modules rarely offer natural boundaries for decom-
position to loosely-coupled microservices. Often this is be-
cause of mutual dependencies on shared data structures.
A microservices architecture requires such dependencies
to be eliminated, and this usually demands a complete re-
think of the application architecture.

No Evolution Path from VNF to CNF
Procedural configuration management is
very different to declarative
The key issue here is that, with procedural con-
figuration management, consistency checking
is applied in a stepwise manner, with each step
dependent on what has gone before. By con-
trast, declarative configuration requires holis-
tic consistency checking of the entire configu-
ration before any change is applied. These two
approaches are fundamentally different, and it
requires a great deal of effort to change a com-
plex application from one to the other.

Any claim being made by a vendor that a net-
work function is cloud native when it is quite
obviously derived from a legacy NF codebase
should therefore be treated with great caution.

Network operators should arm themselves
with a series of questions that are designed to
test the veracity of any cloud native claims be-
ing made for a software NF product. A genu-
inely cloud native NF should be able to answer
the great majority of these questions in the
positive.

The Cloud Native Scorecard

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 19

Is the software packaged as containers and or-
chestrated by Kubernetes?
While historically it has been possible to embody
cloud native architectural characteristics in VM-
based applications and orchestrate with a Gener-
ic VNF Manager, containers and Kubernetes have
come to be synonymous with cloud native and
should be regarded now as absolute requirements
for a CNF.

Is the software composed from multiple micro-
service components, each of which exposes an
open, versioned and documented language-ag-
nostic API?
Vendors should be prepared to share details of
their microservices as re-usable building blocks,
and explain in detail what function each microser-
vice provides.

Are the microservices truly loosely-coupled?
If two or more microservices access state in a
shared store where each microservice relies on a
common schema for the shared state, then these
microservices must be regarded as tightly-cou-
pled. This is a cloud native anti-pattern since it
introduces dependencies that prevent microser-
vices from being independently enhanced.

Does the NF comprise a mix of stateless micro-
services (for event or message processing) and
stateful microservices (for storage of long-lived
state)?
All CNFs that relate to control plane functions
should exhibit this design pattern, which is es-
sential for straightforward automation of scaling,
healing and software upgrade. Data plane CNFs
will necessarily be stateful.

Do the individual microservices scale out dynam-
ically by adding software instances under the au-
tomatic control of Kubernetes?
All stateless microservices should scale out in a
very simple fashion by adding new software in-
stances, without requiring complex initialization
or configuration steps to bring up each new in-
stance. Note that scaling of stateful microservices
is typically more complex, but this should still be
handled automatically by Kubernetes with the aid
of custom Kubernetes Operators.

Are the individual microservices fault tolerant
according to an active-active N+k redundancy
scheme?
A CNF should be resilient to the loss of an individ-
ual software instance, simply by providing a small
amount of surplus capacity. It should never re-
quire 1+1 active-standby protection. The only ex-
ception to this rule is for microservices that termi-
nate legacy network protocols where the endpoint
is defined by a fixed IP address. In those cases, 1+1
protection with virtual IP address swapping is the
only way to achieve high availability.

Can a failed software instance be recovered sim-
ply by killing it and instantiating a new one?
The health of individual software instances in a
CNF is monitored by Kubernetes, which expects to
be able to kill and replace the instance if it misbe-
haves. Complex healing procedures should never
be required.

Can software upgrades be applied to individual
microservices in a non-service affecting manner
by a process of rolling update?
If the microservices are loosely-coupled and the
APIs they expose are properly versioned, then au-
tomated in-service software upgrades can be ap-
plied easily and automatically under the control of
Kubernetes.

© 2019 Metaswitch Networks. All Rights Reserved www.metaswitch.com | 20

Is NF configuration managed declaratively?
A CNF should not expose a CLI, nor should it rely
on procedural configuration management via
sequences of API calls. Instead, configuration
should be declared in documents maintained in
version-controlled repositories, where checked-in
changes are applied automatically to all the soft-
ware instances that make up the CNF.

Does the NF expose a comprehensive set of in-
strumentation APIs that are compatible with the
appropriate cloud native tools?
Prometheus and Fluentd are now so ubiquitous
in the cloud native world for collection of metrics
and logs that all CNFs should implement native
APIs towards these tools. CNFs should also expose
tracing information that provides visibility of all
message and event processing activities, but given
the lack of suitable open source solutions for most
NF use cases, proprietary tracing collection and
analysis solutions are acceptable.

 www.metaswitch.com © 2019 Metaswitch Networks. All Rights Reserved

Conclusion
Cloud Native Network Functions (CNFs) are very different from Virtualized
Network Functions (VNFs) in their design, architecture and relationship to the
open source software ecosystem. It is these differences that enable CNFs to
deliver on the full promise of network virtualization, unlike VNFs: substantive
Opex efficiencies, reduction in service-affecting faults, lower Capex through im-
proved hardware utilization, and acceleration of innovation through adoption
of DevOps approaches.

But the technical differences between CNFs and VNFs run so deep that it simply
isn’t possible to envisage a feasible evolution path for a VNF to become a CNF.
To build a CNF, you really need to start from scratch. That requires a huge in-
vestment, and it isn’t very surprising that many vendors are taking the easy way
out, and simply attaching a CNF label to products that are really VNFs.

Armed with the knowledge provided by this paper, network operators will be in
a much better position to assess to what extent any given NF product is really
cloud native, and therefore what likelihood it has of bringing the truly transfor-
mative improvement that the cloud native approach is capable of delivering.

