

October 2017

White Paper
Cloud Native VNF Operation Automation

By: Roberto Muggianu, Johanna Nieminen (Telia); Paul Brittain (Metaswitch)

Cloud native VNF Operation Automation | Page 2

Contents

1 Foreword by Mauro Costa, Director, Network and IT Infrastructure, Telia Company 5

2 Foreword by Martin Taylor, Chief Technology Officer, Metaswitch 7

3 Executive Summary 8

4 Glossary 10

5 Introduction 11

6 Target Scenario 12

7 Desired Lifecycle Behaviour 13

7.1 Deployment 15

7.2 Healing 15

7.3 Scaling/Move 17

7.4 Change/Upgrade 19

7.5 Overload Conditions 20

7.6 Development Cycle 22

8 VNF Design and Environment 23

8.1 Instrumentation 23

8.2 Self-Management and Abstraction 24

8.3 Discovery and Announcement 26

8.4 Scaling and Load Distribution 26

8.5 Efficient Resource Usage 28

8.6 Minimum Resource Footprint 28

8.7 Dynamic Scalability 28

8.8 Resiliency Mechanism 29

8.9 Management vs. Processing Balance 29

8.10 Contention of Resources 30

Cloud native VNF Operation Automation | Page 3

8.11 State Handling 30

8.12 Rigorous API and Database Versioning 30

9 Additional Considerations 31

9.1 Minimise Special Paths 31

9.2 Licensing 31

9.3 Database Considerations 32

9.4 Security 32

10 Summary of Operational Factors 34

11 Conclusions 35

Cloud native VNF Operation Automation | Page 4

Tables and Figures

Table 1: Telco cloud scale changes over three years 12

Table 2: Importance of automation aspects in lifecycle operation 34

Figure 1: Lifecycle operations 14

Figure 2: Healing Action Flow 17

Figure 3: Canary Testing 20

Figure 4: Cluster versus instance load 24

Figure 5: Simplifying Operations Automation 25

Figure 6: An example approach to move from 1+1 to N+k 29

Cloud native VNF Operation Automation | Page 5

1 Foreword by Mauro Costa, Director, Network and IT Infrastructure, Telia
Company

Network Functions Virtualisation (NFV) and Software Defined Networking (SDN) are two
key concepts that have aggressively spread across the telco community over the last few
years. The pursuit of these concepts has created the widely-held expectation that NFV and
SDN can make us all a lot more efficient, productive and innovative.

Unfortunately, this is not yet the case.

The goal for telcos is not to virtualise our networks or introduce new software technologies
on an ad hoc basis. Rather, it is to make substantial use of such tools to help automate the
end-to-end production factory. This will eventually create an opportunity for a more agile
service environment and, ultimately, the convergence of networks and IT systems, at least
from an infrastructure and process perspective. Resources that are currently locked into
manual operational paradigms will eventually be liberated for more useful purposes and
we will all find better allocation strategies for our capital expenditure.

To pursue the goal of operational automation, we think a more structured and disciplined
way of working is necessary across the industry. Operators will need to learn new ways of
designing and sourcing networks and be open to radically changing their traditional
approach. Vendors will learn new tools and apply new design principles to their software.

There are clear signs of this new approach in the start-up community, but so far there have
been inconsistent efforts to embrace this approach among the traditional, established
telecommunications equipment manufacturers.

If we want to make operational automation successful, manufacturers, software companies
and telcos must together rise to new levels of leadership in driving this forward.

When we look at the challenge from a network operator’s perspective, there are three
priorities that need to be addressed quickly and in a structured way:

 Application software

 Platform readiness, performance and efficiency

 Process redesign

Some of the above might have been addressed in the IT space, but networks are different,
and without losing sight of our convergence goal, networks deserve some special
treatment.

Cloud native VNF Operation Automation | Page 6

This white paper, written in partnership with Metaswitch, presents our views on the priority
of application software. It establishes some key requirements that we will mandate when
sourcing virtual network functions (VNFs) and develops a lifecycle management
perspective. It captures the (sometimes painful) experience we have had so far in Telia
across our automation journey; including some key virtual functions already in operation
and serving real customers at scale, and others that we are in the process of launching in
the market. Also, it embraces some innovative perspectives that Metaswitch has
incorporated in their system design.

All in all, we hope to stimulate a reaction from the industry so that we can come together
to improve the prospects for the adoption of network virtualisation.

Cloud native VNF Operation Automation | Page 7

2 Foreword by Martin Taylor, Chief Technology Officer, Metaswitch

We’ve been helping network operators to realize the benefits of Network Functions
Virtualisation since the very beginnings of the NFV movement, and one message that we
hear over and over is that improved operational efficiency is the number one motivation
for embarking on the transformation to a virtualised network.

Our NFV journey started before the term “NFV” was coined, back in 2011, when we began
the development of an IMS solution designed from the ground up for a cloud environment.
Like every other vendor of networking gear, we came from a background where software
was packaged as an appliance, and we had a lot to learn about the cloud and about cloud
native software design. One lesson we took onboard very early on was that operations
automation is a fundamental requirement. If you build a system that is decomposed into
several microservices components, which scales out horizontally by instantiating more and
more of these components, then you are never going to be able to successfully deploy and
manage such a system manually! Clearly, operations automation is something that you
must bake into the software from the outset.

Our people are software designers and developers, not telco network operations experts.
It’s been a huge pleasure collaborating on this white paper with Telia, and we’ve learned a
lot from the Telia team and the perspective they bring on network operations. It’s also been
very gratifying to have the Telia experts confirm that the approach we’ve taken to
operations automation in the design of our VNFs, learned from best practices in the cloud
software world, does indeed provide an excellent basis for the massive improvements in
operations efficiency that network operators look for in planning their adoption of NFV.

We hope that this paper, based on the combined perspectives of cloud software developers
and network operations experts, will help the industry to better understand how to
maximize the most important benefits that NFV transformation can bring: far faster and
hugely more efficient network operations.

Cloud native VNF Operation Automation | Page 8

3 Executive Summary

Network Functions Virtualisation (NFV) radically changes the way communication networks
are designed, built and operated with the intention of reducing CAPEX and OPEX costs and
increasing service agility. While the early drivers for NFV emphasized the benefits of
hardware and CAPEX cost reduction, communication service providers (CSPs) are
increasingly prioritizing the potential gains in operational efficiency and rapid service
innovation.

Service providers expect NFV to deliver faster development cycles with low operational risk.
They also require efficient resource utilization, such as enabling application sharing and the
reuse of virtual network function (VNF) components. CSPs also expect a more flexible and
agile approach to network and capacity deployment that allows them to start small and
scale on demand.

The ability to realize the expected efficiency and agility benefits of NFV is determined by
many different components of the NFV system, including the cloud infrastructure, the VNFs
themselves and the CSP’s processes and organization. However, the biggest obstacle to
achieving the full potential of NFV is the lack of maturity in the operational automation of
VNFs; automating the lifecycle management of VNFs is a key requirement for NFV.

This white paper focuses on the architecture of a VNF and how the VNF should interact with
the cloud environment to simplify the automation of lifecycle management. We provide
clear directions on the underlying functional requirements for the VNF to achieve such
automation. By embracing the recommendations herein, the entire CSP community can
achieve faster, error-free operational management of their cloud-based virtual network
infrastructure.

This white paper

 Outlines the target scenario for VNF deployment.

 Examines various aspects of lifecycle management for a typical VNF, identifying
desired behaviours that ease operational automation.

 Identifies key requirements on a VNF to achieve target operational simplicity.

Realizing the full benefits of scale enabled by NFV requires adopting these
recommendations as soon as possible.

The work builds on the existing European Telecommunications Standards Institute (ETSI)
NFV management and orchestration (MANO) framework, but the detailed ETSI NFV MANO
interfaces or specific VNF implementation choices are not within the scope of this paper.

Cloud native VNF Operation Automation | Page 9

Customer-level provisioning, infrastructure and more generic network-related issues are
also outside the scope.

This document is primarily aimed at service providers and VNF developers who are involved
in the design and operation of NFV networks, and the selection or creation of VNFs running
in virtualised networks. It is also useful to strategic decision makers and managers wishing
to better understand the operational aspects of NFV.

The authors welcome feedback on this white paper and the evolution towards true cloud
native NFV. Contact details are provided at the end.

Cloud native VNF Operation Automation | Page 10

4 Glossary

Term Acronym Definition

Virtual Network Function VNF In line with the ETSI definition. It corresponds to a
function as defined by the 3GPP standards.

Virtual Network Function
Component

VNFC In line with the ETSI definition. A VNFC represents
the lowest granularity for the execution unit of a VNF
to describe its expected behaviour when deployed in
a cloud environment. Note that

 Nothing is said about the functionalities that
build a VNFC — those are implementation
details (of no relevance).

 A “cluster” is sometimes used as a synonym
for VNFC.

Microservice An execution component with a known and defined
interface. It is normally considered to be part of a
VNF.

Resources Features/elements included in the NFVI (CPU,
memory, disk and networking).

Cloud native VNF Operation Automation | Page 11

5 Introduction

The telecom industry is undergoing a fundamental transformation as networks that
traditionally relied on vendor-specific appliances are becoming more software-centric and
cloud-based with the adoption of NFV. Service providers around the world have started to
virtualise network functions and deploy them in cloud environments. As NFV momentum
builds, traditional standards bodies such as the European Telecommunications Standards
Institute (ETSI) and 3rd Generation Partnership Project (3GPP) have also worked to specify
and consolidate NFV requirements, tools and systems.

At the same time, the telecom services market is changing as the 5G era is poised to begin.
Data traffic is growing tremendously, in terms of overall volume, per-device throughput
and the number of devices connected by the Internet of Things (IoT). Traffic patterns are
likely to become less predictable due to new applications and changes in customers
behaviour and lifestyles. Deployment topologies for network applications need to address
new demands such as very low latency (i.e., less than 5 ms)1.

Moreover, efficiency (which includes resources used, cost and personnel) and agility are
becoming increasingly important. The ability to deploy or reuse network functions within a
few minutes and the capability to dynamically change the allocation of resources based on
traffic demand or time-of-day factors, are fast becoming must-have criteria for network
design.

All industry players need to look at how their systems and processes evolve within this
network transformation, and be prepared to take a critical and innovative approach to their
NFV plans. This includes the design of the VNFs themselves.

A critical factor in service providers’ ability to reap the operational efficiency benefits of
NFV will be the extent to which they can automate the lifecycle management of VNFs. One
of the attractions of NFV is that network applications can be instantiated rapidly so that
new services can be launched in a matter of hours or days, rather than weeks or months
(with dedicated appliances). Such speed, and the associated efficiency gains, require
automation in the VNF lifecycle management.

But service providers are discovering that not all VNFs are designed to enable operational
automation. VNFs need to be architected, or re-architected, based on cloud-native design
principles. Simply porting software from a specialized appliance into a cloud environment
will not achieve the full benefits of NFV.

1 Latency requirements will force a deployment model where VNFs run closer to the edge device.

Cloud native VNF Operation Automation | Page 12

6 Target Scenario

To better frame the extent of the challenge faced by service providers and VNF developers
as networks evolve towards 5G, we assume that a moderate-scale national network will
face the following scale of change in cloud infrastructure requirements over the next 3
years:

 2017 2020+

Data Centers 2-3, centralized 50, central and
edge-distributed

vCPU numbers <10k >100k

Component/VM count <1k <30k

Table 1: Telco cloud scale changes over three years

While a cloud infrastructure has the potential to provide the needed flexibility, and can
therefore be the foundation for network evolution, infrastructure evolution alone will be
somewhat pointless without both management layer tools for orchestration and
appropriately designed network applications.

Cloud native VNF Operation Automation | Page 13

7 Desired Lifecycle Behaviour

For operators to reach these targets, VNFs need to use resources efficiently and support
operations automation. Automation is the key to simplifying the management of cloud
network deployments.

If we simply move software from a physical appliance to execute in a virtual machine (VM),
that makes little practical difference to the complexity of managing the network. In fact,
doing so without sufficient focus on automating lifecycle operations may add further layers
and operational process steps, increasing costs despite replacing proprietary hardware with
commodity off-the-shelf (COTS) alternatives. As networks get ever larger and more
complex, it is increasingly important that the VNFs themselves are rearchitected to enable
simple automation of such operations.

It is also worth noting the difference between orchestration and automation as the two
terms are often used in the same context and as synonyms, while in practice they are not.

Automation can happen at many different levels. Some of them might not imply
orchestration at all (as defined by ETSI2). It is up to proper system analysis to define the
level at which the automation will take place3 and to avoid overcomplicating the design by
introducing closed loops at many conflicting levels.

Orchestration, as defined by ETSI, is the management of the cloud infrastructure, balancing
the needs of multiple VNFs and applications within defined parameters and a given load.
This paper focuses on automation of the lifecycle of a VNF, which will form part of
orchestration but is not a complete solution to that wider problem. We do not consider the
orchestrator itself but instead concentrate on the VNF.

In the following chapters, we consider the lifecycle of a VNF as comprising the following key
operational phases

 Deployment

 Healing

 Scaling/Move

 Change/Upgrade

2 In many VNFs, overload conditions can be handled by automation and congestion control but does not
require orchestration.
3 This analysis is mainly driven by the dynamics of the underlying traffic.

Cloud native VNF Operation Automation | Page 14

For each phase, we analyse the ideal VNF behaviour and characteristics needed to benefit
from cloud infrastructure features while meeting target operational efficiency.

These operational phases group several of the standardised ETSI operations from the NFV
MANO framework (see Figure 1: Lifecycle operations). We have concentrated on the
process of deploying the application software cluster, the collection of multiple instances
of each VNFC that make up the VNF. [Subscriber-level provisioning is outside the scope of
this paper.]

 Fully automated lifecycle operations based on constant monitoring

Deployment

 Onboarding

 Initial instantiation and configuration

 VNF becomes operationally ready

Change / Upgrade

 Start new high level components and
shut down low level components:
“Scale out then scale in”

 Domain-specific interactions to
upgrade itself

Healing

 Recovering from failure

 Reestablishing the virtual topology

 Starting and embedding new virtual
components, if needed

Scaling/Move

 Adapt to change in customer demand
maintaining target KPIs

 Change the virtual topology to reach a
different steady state (Launch new
components or move components)

Figure 1: Lifecycle operations

In addition to the ETSI-defined lifecycle operations, successful cloud VNF design must also
consider

 Overload conditions

 Development cycles

There are also other cloud operational actions across the entire application/cloud
infrastructure/network stack, such as disaster recovery, backup and recovery, or cloud
bursting that must be considered, although these are out of the scope of this paper.

Cloud native VNF Operation Automation | Page 15

7.1 Deployment

This lifecycle operation includes the traditional on-boarding and instantiation, as well as
the VNF cluster-level and service-level configuration. Once this phase is complete, the
application will be ready to work in its operational environment.

This initial stage of the VNF lifecycle should be completely automated. By encompassing
initial service configuration — one of the still largely manual, time-consuming activities for
many applications — the service provider is assured that the VNF has been deployed in an
error-free manner. It is then ready for subsequent automated scaling or topology changes
based on a known configuration model.

This is important today when we have only a few central sites. It becomes even more
essential when many more edge sites must be managed in a dynamic way or when more
complex operational models are needed —multiple instances of a per-enterprise service
hosted by a service provider but managed by the customer, for example

Consider, for example, a URLLC4 application running on a service provider’s MEC (Multi-
access Edge Computing) cloud. Such an application may be dynamically created in any of
tens or hundreds of edge sites. If they are to provide the desired low-latency behaviour
then they also need careful resource allocation with physical location awareness.

Another example would be a field trial. In this case, speed to market is key and possibly
requires deploying in an existing production environment.

In all cases, the common requirement is to minimise operational risk during the service
lifetime. Only by successful automation of the initial deployment can a service provider
attain the expected flexibility while at the same time reduce the complexity of later
operational phases, and therefore the overall operational risk.

7.2 Healing

Per ETSI GS NFV-IFA 010 V2.1.1 (2016-04), VNF Healing is “a procedure that includes all
virtualisation-related corrective actions to repair a faulty VNF, and/or its VNFC instances
and internal VNF Virtual Link(s).”

ETSI addresses healing from a management layer perspective. Here, we look at it from the
VNF perspective.

4 Ultra-reliable low-latency communications application

Cloud native VNF Operation Automation | Page 16

The assumption here is that the VNF is running in a ‘steady state’ situation and undefined
external or internal conditions change the VNF’s state. The expected healing behaviour is
to re-establish the previous topology as quickly as possible.

The external conditions that force healing to happen might be unforeseen (e.g. a failure) or
planned (e.g. driven by the need to deploy a configuration change). Healing relies on a
model of the network and VNF, and the ability to continuously perform closed-loop actions
to re-establish the desired steady-state.

Healing may be achieved by immediately fixing a failed instance, or more generally, creating
a new instance of the failed component. The failure can be detected at different levels and
it is the responsibility of proper instrumentation (see 8.1) that these events are signalled in
a timely manner to the related components.

Healing is different from resiliency. Resiliency is a largely ‘static’ concept, which enables a
certain function to achieve a defined service level. Traditional resiliency schemas are
typically 1+1, N+1 or N+k.

Healing refers to a more dynamic feature where the VNF and infrastructure can undertake
operations to re-establish an existing topology, such as recovering to full capacity, by
adding a new VNFC to a cluster, replacing that which was removed due to a host failure.
The new component may receive a different configuration (e.g. a new IP address) from the
cloud infrastructure. To handle this, the VNF should not rely on neither the physical
characteristics of the infrastructure nor the expected behaviour of the NFV Infrastructure
(e.g. how addresses are allocated). Such design is implicit to the cloud environment.

The VNF shall be able to bring new instances of VNF components into the deployment
topology, as needed to re-establish the target state. This implies the ability to properly
configure them and integrate with surrounding systems (and if needed with the networking
context), irrespective of whether these instances are created at the start of day (like in
traditional resiliency models) or more dynamically as fits the cloud. Figure 2 depicts how
the healing action flow works in practice.

It is highly recommended that the interaction(s) needed with the management layer during
healing is kept as light as possible since this operation does not require any change in the
resources allocation and it is ‘simply’ re-establishing a target topology.

Cloud native VNF Operation Automation | Page 17

Figure 2: Healing Action Flow

A final word about the concept of healing versus resiliency: under the right circumstances5,
the healing process might completely replace the traditional static resiliency mechanisms.

7.3 Scaling/Move

This lifecycle operation describes the ability of a VNF to adapt to a change in the demand
of the customers being served. This adaptation is achieved by looking to keep a defined
target, such as a set of pre-defined KPIs, within an acceptable range or value. The desired
behaviour is to do that within the most efficient way possible, from a resources perspective.

The most obvious scenario is when the resource being considered is the CPU. The desired
behaviour for scale is to keep the application occupying the lowest number of CPUs. In this
case the VNF will act to change its topology to reach a different steady state (as opposed
to trying to preserve when healing). This change typically implies a change in the number
of components of the VNF.

5 Strictly related to the speed of the healing process and application design

Cloud native VNF Operation Automation | Page 18

If the scale scenario requires the creation of new VNF components, then the same
considerations given to the healing operation should apply; with new components being
recognized and incorporated into the VNF cluster automatically.

In general, scaling should be a completely automated operation. Efficient scaling with
automation requires that

 KPIs must accurately reflect resource use, and be updated in a timely manner.

 The execution time of the scaling actions shall be in line with the dynamic of the
characteristic to be controlled, or efficiency may be lost.

 “Scale-in” action is essential for efficiency, but may be more complex than scale-
out if the VNF is stateful.

 If the VNF has several distinct components, with different scaling logic based on
different aspects of the traffic load (e.g. concurrent registrations vs transactions-
per-second), it shall be possible to change them independently.6

 The change overhead (on the management of the infrastructure) shall be kept to a
minimum to reduce complexity and aid timely reaction to changes in traffic load.

The ideal condition and desired behaviour is where homogeneous components are evenly
loaded7.

The scaling mechanism should also implement algorithm and policies to avoid instability,
such as flip-flopping or overconsumption of resources.

It is worth mentioning that some scale operations may require that components of a VNF
are instantiated differently across a geographically distributed execution environment. We
refer this as “move.” Move operations might occur to keep a latency target on a set of
customers served by the function, or for other reasons.

Beside the specific trigger event, all the considerations about scaling and healing apply also
to “move.” Note that the moved component might take a different flavour and scale per
different policies8 enforced at its new location.

Specific attention should be placed on the rebalancing of customers if they need to be
moved as well. This move can happen to newly created or existing components.

6 Respecting any cross-dependency if needed
7 That is the optimal configuration assuming homogenous components are equally sized.
8 The sizing of the moved component, for example, could be completely different

Cloud native VNF Operation Automation | Page 19

7.4 Change/Upgrade

The upgrade of a VNF is a relevant part of its lifecycle and one that most often needs careful
planning because of its complexity and the operational risk implied. It is very important to
reduce, as much as possible, the complexity of upgrade to simplify and lower the risk of
more frequent development cycles for the function or application9.

In addition to software version upgrades, there are occasions when major service-level
configuration changes may be required that are similar in scope and impact to an upgrade.
Examples include permitted codec combinations, national dial plan changes or fundamental
service set alterations.

Traditional approaches to such upgrades/changes relied on the network being made up of
multiple independent systems like switches and routers. The change is initially made in a
first office application and a progressive roll-out executed after a stable period. Each such
upgrade is manual however and the coordinated upgrade of a complete network may take
many weeks across multiple maintenance windows.

Cloud deployment offers an alternative, faster and lower risk path to perform these
operations.

At the foundation is the capability of a VNF to update its components independently, which
can be achieved by replacing the current version of one component with the new one.

This upgrade may be performed in-place, using the same VM and other resources already
allocated, or via a scale-out/in operation to add an up-level node to the cluster and then
removing a back-level node.

The choice of upgrade style depends on the capabilities and service needs of the specific
VNF and its components to be upgraded. In either case, the VNF must be able to operate
correctly while at different revision levels.

Where a VNF uses a distributed database for state storage, upgrading the version of a
database itself requires more careful coordination to ensure that the system remains
quorate in each site, and to ensure consistency in the data during the upgrade procedure.

The cloud also offers the possibility of deploying very small instances of a function quickly
and easily. Web-scale players10 use this to allow them to upgrade a small portion of their
user base to a new level initially, monitor that community intensively to validate the
upgrade is good, and then apply it more widely. Service providers can apply the same
approach by temporarily segmenting their subscriber base during upgrade, and can achieve

9 A quicker development time tracks more closely to market demand.
10 Facebook, for example, use this approach as part of their DevOps process.

Cloud native VNF Operation Automation | Page 20

this with little or no cost in terms of resources11, reducing the risk of a flash-cut to the new
system for the entire user base. This is sometimes referred to as Canary12 testing (as shown
in Figure 3).

Figure 3: Canary Testing

Developing or replicating an automated upgrade procedure as a part of the on-boarding
process to a NFVI/MANO stack for each service provider adds time, cost and risk to the on-
boarding process. Ideally, the function should self-manage the complex application
domain-specific interactions for upgrade, exposing only easy-to-use application
programming interfaces (APIs) to request the upgrade or change.

7.5 Overload Conditions

In an overload condition, the function may need to manage sudden and unusually high
demand. In traditional system analysis terminology, this is equivalent to experiencing a step
function in traffic load.

This situation typically occurs because of a major network failure where an extremely large
number of customers attempts to use the service (i.e. a signalling storm), or in a situation
like a DDoS attack.

11 One function is replaced by two whose capacity sums to the original one.
12 See http://whatis.techtarget.com/definition/canary-canary-testing

Cloud native VNF Operation Automation | Page 21

Network functions should deal with this abnormal situation gracefully, avoiding instability
flapping, and recovering in a finite and predictable amount of time.

To achieve these goals:

 Functions must keep working in saturation conditions. For example, using smart
tactical overload protections mechanisms to reject some traffic early.

 Functions should be able to accept and use additional resources that the cloud
infrastructure makes available to them during overload, but should not pre-
reserve dedicated resources for this.

The art of not reserving dedicated resources deserves a closer look. In legacy scenarios
there is normally a portion of each node capacity dedicated to absorbing overload and
engineering logic is to limit the resource consumptions to a certain threshold13. Capacity is
engineered for each function separately.

In a cloud environment, the VM resources are available beyond the obvious hardware
constraints of a traditional physical appliance. The capacity engineering in such overload
situations will be more efficient if the spare resources are treated as a shared pool. In
general, one function’s action to limit overload will protect some others down the chain14,
though which function is first to experience overload will depend on the exact nature of
the load pattern. This phenomenon means that overload capacity can be shared, and
potentially even reallocated away from less mission-critical functions (via scale-in if
needed). However, each function should expect that resources for overload are contended,
and must remain stable in a state of saturation

Automated operational processes form an essential part of overload handling in the cloud
— via scale-out/in, for example. In addition, for each VNF and the cloud to remain stable
during and after overload, a VNF must

 Intelligently discard load15, such that it can continue to process some load even
under saturation.

 Request additional resources to handle overload only when required.

 Remain stable even if additional resources are not granted immediately.

13 For example, CPU load in those conditions limited to a certain level.
14 For example, an EPC function can protect the elements on the data chain.
15 Simply discarding 50% of IP packets, for example, is likely to result in no traffic being successfully
processed. Protocol-level retries from adjacent elements may then prolong the overload to the point
where the entire system is very slow to recover back to steady-state resource use.

Cloud native VNF Operation Automation | Page 22

 Ensure these additional resources are released promptly as load subsides.

7.6 Development Cycle

These automated lifecycle operations are necessary but not sufficient to achieve radical
gains in operational agility. Service providers may also need to adopt more end-to-end
process changes like continuous integration. These changes are complex and necessarily
tailored to each organization and relevant stakeholders, so we concentrate here on high-
level observations relating only to the VNF architecture.

All service providers likely need to review how parts of the complete development cycle
are performed, and how they can shorten the path from an a new function request to actual
service deployment16. This effort will give benefits in terms of

 The ability to respond to customers’ requirements in the most efficient and timely
manner.

 Lowering the overall complexity for a new function by leveraging existing functions
instead of building complete new systems from scratch (yet another “box”).

This effort will impose certain requirement on the VNFs, processes and related tools.

With respect to the VNFs, in addition to focusing on lifecycle automation the VNF
architecture should separate each component with clearly defined interfaces to adjacent
components. This puts focus on allowing the reuse of individual components with minimal
reworking of those affected by new requirements. This is commonly termed a
microservice17 architecture.

16 DevOps is the common terminology summarizing this requirement.
17 See https://en.wikipedia.org/wiki/Microservices for a deeper explanation of microservices.

https://en.wikipedia.org/wiki/Microservices

Cloud native VNF Operation Automation | Page 23

8 VNF Design and Environment

This section describes the key features a VNF should include to meet the target lifecycle
behaviors. The aim is to describe those key features without specific reference to either
technologies or development patterns.

8.1 Instrumentation

It is critical that all VNFs maintain and make available a complete set of information related
to its deployment status and to the service it provides. The dynamic and timely nature of
this information is essential for closed-loop automation to be effective.

Examples of relevant information include

 A topology of the functions — components, version(s), IP addresses, relevant
identifiers

 Health status

 Load indications as measured or calculated at VNF component level.

 Traffic/performance measurement at application and component levels e.g.
messages processed and bandwidth used.

 Service specific information suitable for detailed Quality of Experience (QoE)
analyses e.g. measured latency or round-trip time (RTT).

 Key load distribution metrics.

VNFs should make this information available

 Via well-documented, open (royalty free) APIs and, possibly, integrated with most
common monitoring and analytical tools18

 With a sampling time appropriate to the application domain (which can be less
than seconds).

 In a reliable way for all the foreseen service conditions, including overload.

It is preferable to have all the information available via a single VNF-level entry point (in
addition to or instead of VNFC-level entry point) — e.g. a specific KPI function component

18 Such as Grafana, Splunk, Elastic stack

Cloud native VNF Operation Automation | Page 24

— but its failure shall not compromise the VNF’s main functional behaviour19. This avoids
having to re-implement complex logic to combine KPIs in the correct manner as part of on-
boarding to each NFVI and MANO.

Figure 4: Cluster versus instance load

High quality built-in instrumentation assists all other lifecycle operations and can also
replace hardware-based probes. This is particularly true of traffic tracing, which in the cloud
context means always-on recording of internal events as well as protocol flows.

With tracing built into a VNF, problem diagnostics are not reliant on having probes in the
right place, at the right time. This results in faster resolution without needing to reproduce
the problem. It also avoids having to hairpin traffic in/out of each VNF to costly high-
performance line trace probes, which may be external to the cloud virtual switch domain,
wasting bandwidth and other resources.

Good instrumentation and built-in tracing are expected, if properly implemented, to offer
a valuable opportunity to reduce operational complexity and costs. This is a fundamental
requirement for any VNF to achieve the desired levels of automation and operational
savings.

8.2 Self-Management and Abstraction

VNFs shall not assume a higher level of management (e.g. orchestration in the ETSI NFV
MANO framework) or support any level of complexity or granularity of control to manage

19 This reference point and related functions can be regarded as the control part of the application.

Cloud native VNF Operation Automation | Page 25

lifecycle operations for the application. Where application domain-specific knowledge is
required to complete an action correctly, the VNF itself should handle that complexity.

This level of abstraction is reached with an API is as simple as possible and informative
enough to enable a more complicated flow of operation at the orchestration level.

Examples of operations that require more complicated orchestrated flows include

 upgrade, check and roll-out.

 Scaling overflow (when a new VNF(C) instance is required).

 Healing, after one or more host failures.

This approach is similar and extends the ETSI MANO concept whereby the VNF manager
(VNFM) provides abstraction of the function towards the upper layer management systems.
The exact labelling and split of responsibility between VNFM and VNF is not important so
long as the package delivered to the service provider handles any VNF domain-specifics,
such as VNFC start-up phasing and clustering, without requiring complex per-deployment
scripting.

Figure 5: Simplifying Operations Automation

Cloud native VNF Operation Automation | Page 26

8.3 Discovery and Announcement

Efficient cloud deployment models result in a very dynamic network status, with each node
and service potentially scaling or being upgraded independently, in addition to network
topology changes due to site or cloud failures.

Relying on manual or scripted mechanisms to keep pace with such change is not tenable
therefore VNFs should provide mechanisms to manage those dynamics.

Specifically, VNF components should

 Expose and announce changes for their main integration points and adjacent
internal components.

 Monitor for topology announcement and act accordingly

 Expose and announce changes to the physical or external components they
integrate with20.

 Document failure detection and recovery mechanisms that can be automated via
standard actions in adjacent components – for example, retry to the next DNS SRV
record for the IMS core.

 Incorporate location awareness and selection and local feedback loops, where
needed for URLLC applications; to avoid long feedback cycles if resource/location
selection always route to a central site, for example.

8.4 Scaling and Load Distribution

VNFs typically meet demand by horizontal scaling (i.e. by adding or taking down instances
of the required components). For this to function well in a cloud with efficient resource
usage, VNFs need to

 Spread load across the multiple VNFC instances.

 Evenly distribute the load on homogeneous components under normal traffic
patterns.

 Reallocate load during scaling operations.

 Avoid focused overload (such as DDoS) impacting the service for all users

20 For example, an external DNS.

Cloud native VNF Operation Automation | Page 27

Some VNF deployments may also need to be able to operate in heterogeneous
environments, where different-sized components are needed on different cloud platforms
deployed in edge and core sites.

It is therefore very important that each VNF implements efficient and intelligent load
distribution policies. To achieve this, several aspects of traffic and platform performance
need to be considered into the load balancing mechanisms.

The load balancing mechanisms must be purely software based. This is to avoid both
bottlenecks and the constraints that come from deploying physical functions (as opposed
to using pure software operations).

VNFs should support load distribution across all available nodes within a cluster. This
balancing may be pure “equal weight” between instances, or incorporate location
awareness, preferring local nodes in an edge site with fall back to central nodes. This should
be achieved without need for special processing paths to achieve good load balancing, as
this reduces complexity. The techniques used to do this may vary by VNF but can include
sharding of the user population statically or dynamically (via short lifetime association of
per message/transaction21/registration), often coupled with single or multi-horizon routing
or anycast (as discovery mechanisms), and the retry mechanisms built into many standard
protocol flows.

Regardless of load balancing implementation (for a specific VNF), it must satisfy the
following criteria

 Dependencies on adjacent functions, including any internal components using the
same mechanisms22, should be standards-based and clearly documented23.

 Any external systems that form part of this load balancing, such as DNS, should be
updated as part of the automated operational processes used to manage this VNF.

 It must be possible to tailor the load balancing mechanism to ensure efficient
routing across multiple sites in a distributed system24

21 For example, first interaction in a transaction routes to any available node, then subsequent parts of
same transaction are routed back to same node.
22 See as well Discovery and Announcement
23 DNS with retry to alternate SRV records, or anycast, for example.
24 Such as ‘hair-pinning’ media at the edge

Cloud native VNF Operation Automation | Page 28

 The breakdown of the VNF into sub-components should not introduce undue
inefficiencies in the routing of requests between sites or between hosts/VMs
within a site25.

8.5 Efficient Resource Usage

It should be a clear target and major performance indicator for any VNF to make efficient
use of the cloud resources. In this context, all the resources required by all the VNFs are
considered. This search for efficiency depends on multiple criteria and, of course, on the
efficiency of any single component.

Note that this requirement for efficiency has always been relevant and only becomes more
significant in cloud deployments.

8.6 Minimum Resource Footprint

When considering the resource required to effectively run any VNF, it is important to
ensure that

 VNFs tightly fit the demand, without waste, at any point in time.

 VNFs scale down elegantly; very small demand should be covered by a very small
footprint.

 Component instances are as small as possible, while remaining efficient, for
optimal cloud utilization.

 Only needed resources are requested26.

 Granted resources are used efficiently27.

8.7 Dynamic Scalability

The process for adding or removing VNF components should be as simple and as fast as
possible. This allows resource usage to closely follow any demand curve.

VNF components should scale per their own needs to meet this target.

25 Particular care is required for user-plan functions to avoid multiple “east-west” routing between
subcomponents
26 Assuming no over-commitment is used, which typically is how network functions are deployed
27 If a VNF is poorly implemented, putting it in the cloud will not make it scale well – it will just use more
cloud resource!

Cloud native VNF Operation Automation | Page 29

Note that dynamic VNF scaling over short time periods may require the introduction of
technologies that enable vary rapid spinning up and down (e.g. containers).

8.8 Resiliency Mechanism

The ideal VNF design for cloud uses N+k active-active redundancy model where both N and
k are configurable. If suitedd to the service delivered by the VNF, the N+k cluster should be
able to be spread across sites for maximum hardware efficiency28.

Figure 6: An example approach to move from 1+1 to N+k

8.9 Management vs. Processing Balance

VNFs should maintain a fair balance between resources dedicated to its management and
to those processing the demand. In a scale-out scenario, the needs of demand processing
should dominate.

28 For example, a 6-site distributed N+k model, with 20% local redundancy as well, uses 1.44N, compared
with 4N for traditional 1+1 resiliency both locally and across 2 sites; a saving of nearly 3x.

Cloud native VNF Operation Automation | Page 30

8.10 Contention of Resources

In general, network functions tend to peak at the same time, preventing use of over-
committed resources. With the advent of new cloud and service paradigms (such as
network slicing), a service provider may possibly opt to use contention in the following ways

 All VNFs contend for spare resources from a common pool to handle overload29.

 Light overprovisioning for some resource types30 between network slices
(especially for higher-layers of the service stack).

VNFs should provide predictable behaviours when working with a contention of resources.

8.11 State Handling

The ideal internal design for a cloud native VNF will usually be to separate state into a
distributed database, with stateless compute nodes processing traffic based on, and
updating, that stored state. This architecture eases load balancing and separates the scaling
of the compute cluster and database processing per the dynamic needs of the traffic model.

This ideal model for stateless processing nodes may not be possible for all VNFs. However,
state should always be clearly identified and sand-boxed to a limited set of sub-components
within a VNF. This keeps all the expensive operations related to the protection, replica and
recovery of the state to a minimum, and eases the automation of operational tasks as far
as possible.

8.12 Rigorous API and Database Versioning

Cloud network functions are typically split into multiple subcomponents, or microservices.
For this modular approach to work well with automated operations such as scaling, healing
and upgrade across multiple sites, all interfaces to the function and between
subcomponents must be

 Clearly defined and documented.

 Allow different versions (at least N and N+1) to coexist with defined behaviour to
enable an in-place upgrade.

In this context, the database schema used to store state is effectively an internal interface
that must also be versioned. This is exposed via APIs to the VNF components that store

29 See overload section
30 Contention may be foreseen for CPU not considered for memory or storage; if the minimum VM size for
some components of a slice is larger than required for the total traffic envisaged, for example.

Cloud native VNF Operation Automation | Page 31

state, rather than directly exposing the internal schemas or native APIs of the databases in
these components. By decoupling APIs from schemas and making them technology neutral,
it becomes possible to safely evolve database schemas or change database technologies,
hiding these changes behind versioned APIs.

Up-level capabilities should only be used across an interface if both sides have agreed to
their use. Many 3GPP and other standards incorporate such capabilities and similar logic
should be applied to internal interfaces too.

9 Additional Considerations

In addition to the VNF features discussed in the previous section, there are several other
considerations that will affect operations automation.

9.1 Minimise Special Paths

Complex but rarely used processes and code paths – such as for disaster recovery – are
prone to failure, with potentially serious effect.

Cloud VNFs should be designed with minimal special code paths; recovery from failure
should be architected into the mainline paths.

This requires a different mindset to many traditional physical systems, though the
principles outlined above will help. For example, segregating state into a distributed,
resilient database should eliminate the complex “sync” operations typically used between
appliances with local state stores, and all the risks of failure or any need for “resync.”

A cloud VNF should be aware of the declarative model of desired state for its operation,
and work towards bringing its internal state to that desired state as the mainline code path.
Subscriber data not in cache, for example, is fetched if it is not found – whether that is on
the first transaction from the subscriber or after a cache failure. And recovery from failure
of a compute process can be via a simple transaction retry.

In short, parts of the cloud will fail and a cloud VNF shall handle such events as part of its
normal processing.

9.2 Licensing

Cloud environments shall be dynamic, with resources allocated on demand and processes
potentially scaled or moved frequently. Traditional appliance-based licensing systems do
not cope well with such environments. Typical issues include trying to limit process
instances, or locking licenses to physical hosts or VM IDs.

Cloud native VNF Operation Automation | Page 32

VNF licensing should not impose limits, instead nurturing a fully automated cloud
deployment model. Cloud native licensing models should also lend themselves to various
business models, such as pay-as-you-grow or license pooling.

Note that good instrumentation of the VNF certainly eases implementation of a flexible and
cloud-friendly licensing model.

9.3 Database Considerations

There are many good distributed databases available for VNFs to use to store state and
configuration in a cloud architectures. But databases are not equal, particularly with
regards to their consistency and availability, or partition tolerance (see the CAP theorem31),
or the balance of read/write performance requirements.

Different VNFs, or components of one VNF, may require different databases to fit with the
resiliency characteristics required for the service. At the same time, service providers may
be concerned about the proliferation of database technologies causing increased load to
understand, manage and secure each variant.

An ideal cloud VNF will have clearly defined APIs to the underlying database it requires,
with clear definition of the CAP and other characteristics. The service provider then has the
option to plumb the VNF into the preferred database technology.

9.4 Security

Security is a very wide topic which we cannot cover in depth in this paper. However, a few
high-level implications on VNF design for the cloud are worth pointing out:

 Each VNF should document and utilize an appropriate security framework and
policy which can be applied automatically and without error across all lifecycle
operations

 The inherent distributed nature of a cloud VNF calls for proper protection
(typically encryption) of all communication among the components

 Denial of Service attacks may be mitigated in a cloud environment via dynamic
scale-out under appropriate policy controls, more quickly and easily than has been
possible for physical appliances.

There is no “obviously right” answer for security. Each service provider must assess their
own needs and constraints. The only certainty is that any pretence of security via physical
access control or obscure interfaces – both of dubious protection in any case as shown in

31 https://en.wikipedia.org/wiki/CAP_theorem

Cloud native VNF Operation Automation | Page 33

widely-reported SS7 network attacks – certainly do not apply to an all IP-based publicly
accessible cloud.

Cloud native VNF Operation Automation | Page 34

10 Summary of Operational Factors

Table 2 summarizes the relative importance of the various operational automation aspects
for each lifecycle operation.

 Deploy Healing
Scale/
Move

Change/
Upgrade Overload

Devops
Cycle

Instrumentation

Self-
management

Discovery

Load-balancing

Resource use

Minimize
Special Paths

State handling

Versioning

 Critical Important Less Important

Table 2: Importance of automation aspects in lifecycle operation

Cloud native VNF Operation Automation | Page 35

11 Conclusions

It is very clear that the telco industry is undergoing a deep transformation, both
technological and cultural, which will require a radical mind shift in all the players, current
and future. From a technological perspective, the shift moves us into a world that is
software centric with extensive automation of operations. Faster development cycles with
low operational risk, efficient resource utilization and scaling on-demand are the key
benefits being sought. For this shift to be successful, the automated operations must
understand the domain-specific characteristics of each VNF. Failure to do so is likely to lead
to sub-optimal results. This is most efficiently achieved by embedding application domain-
specific logic within the VNF itself (as far as possible), so that it can be reused across
different cloud environments and different service providers with minimal effort or risk of
error.

In future, VNFs may need to evolve to operate not just in VM-based Infrastructure-as-a-
Service (IaaS) clouds but also containerized or even serverless models. Cloud-bursting and
the sharing of resources between IT and NFV payloads promise further optimization of the
resource requirements for service providers.

Culturally, the shift to cloud requires that engineering, planning and operations teams and
processes (not only internally but across all the stakeholders involved) come closer
together, applying scarce people resources to high-value operations and decision making
rather than more menial tasks. Automation enables this, but wider organizational buy-in is
required to move to a true DevOps model. In this paper, we have laid out the application-
layer groundwork necessary for this to occur, but each service provider must define in
further detail how they will make their processes and organization more agile, with specific
influences like market size, market position and strategic targets also in mind.

While it is unrealistic to expect that the transition to more efficient cloud VNFs will happen
in one easy step, all the players in the telco arena should have a clear focus on the benefits
they are targeting. If executed correctly, cloud migration will be a win-win situation for
everyone involved.

Cloud native VNF Operation Automation | Page 36

For further questions and feedback please contact:

Roberto Muggianu, Senior Network Architect, Telia Company
roberto.muggianu@teliacompany.com

Johanna Nieminen, Senior Network Architect, Telia Company
johanna.x.nieminen@teliacompany.com

Paul Brittain, VP Product Strategy, Metaswitch Networks
Paul.Brittain@metaswitch.com

Response times may vary.

mailto:roberto.muggianu@teliacompany.com
mailto:johanna.x.nieminen@teliacompany.com
mailto:Paul.Brittain@metaswitch.com

