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1 Foreword by Mauro Costa, Director, Network and IT Infrastructure, Telia 
Company 

Network Functions Virtualisation (NFV) and Software Defined Networking (SDN) are two 
key concepts that have aggressively spread across the telco community over the last few 
years. The pursuit of these concepts has created the widely-held expectation that NFV and 
SDN can make us all a lot more efficient, productive and innovative.  

Unfortunately, this is not yet the case.  

The goal for telcos is not to virtualise our networks or introduce new software technologies 
on an ad hoc basis. Rather, it is to make substantial use of such tools to help automate the 
end-to-end production factory. This will eventually create an opportunity for a more agile 
service environment and, ultimately, the convergence of networks and IT systems, at least 
from an infrastructure and process perspective. Resources that are currently locked into 
manual operational paradigms will eventually be liberated for more useful purposes and 
we will all find better allocation strategies for our capital expenditure.  

To pursue the goal of operational automation, we think a more structured and disciplined 
way of working is necessary across the industry. Operators will need to learn new ways of 
designing and sourcing networks and be open to radically changing their traditional 
approach. Vendors will learn new tools and apply new design principles to their software.  

There are clear signs of this new approach in the start-up community, but so far there have 
been inconsistent efforts to embrace this approach among the traditional, established 
telecommunications equipment manufacturers.  

If we want to make operational automation successful, manufacturers, software companies 
and telcos must together rise to new levels of leadership in driving this forward.  

When we look at the challenge from a network operator’s perspective, there are three 
priorities that need to be addressed quickly and in a structured way: 

 Application software  

 Platform readiness, performance and efficiency 

 Process redesign 

Some of the above might have been addressed in the IT space, but networks are different, 
and without losing sight of our convergence goal, networks deserve some special 
treatment. 
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This white paper, written in partnership with Metaswitch, presents our views on the priority 
of application software. It establishes some key requirements that we will mandate when 
sourcing virtual network functions (VNFs) and develops a lifecycle management 
perspective. It captures the (sometimes painful) experience we have had so far in Telia 
across our automation journey; including some key virtual functions already in operation 
and serving real customers at scale, and others that we are in the process of launching in 
the market. Also, it embraces some innovative perspectives that Metaswitch has 
incorporated in their system design. 

All in all, we hope to stimulate a reaction from the industry so that we can come together 
to improve the prospects for the adoption of network virtualisation. 
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2 Foreword by Martin Taylor, Chief Technology Officer, Metaswitch  

We’ve been helping network operators to realize the benefits of Network Functions 
Virtualisation since the very beginnings of the NFV movement, and one message that we 
hear over and over is that improved operational efficiency is the number one motivation 
for embarking on the transformation to a virtualised network. 

Our NFV journey started before the term “NFV” was coined, back in 2011, when we began 
the development of an IMS solution designed from the ground up for a cloud environment. 
Like every other vendor of networking gear, we came from a background where software 
was packaged as an appliance, and we had a lot to learn about the cloud and about cloud 
native software design. One lesson we took onboard very early on was that operations 
automation is a fundamental requirement. If you build a system that is decomposed into 
several microservices components, which scales out horizontally by instantiating more and 
more of these components, then you are never going to be able to successfully deploy and 
manage such a system manually! Clearly, operations automation is something that you 
must bake into the software from the outset. 

Our people are software designers and developers, not telco network operations experts. 
It’s been a huge pleasure collaborating on this white paper with Telia, and we’ve learned a 
lot from the Telia team and the perspective they bring on network operations. It’s also been 
very gratifying to have the Telia experts confirm that the approach we’ve taken to 
operations automation in the design of our VNFs, learned from best practices in the cloud 
software world, does indeed provide an excellent basis for the massive improvements in 
operations efficiency that network operators look for in planning their adoption of NFV. 

We hope that this paper, based on the combined perspectives of cloud software developers 
and network operations experts, will help the industry to better understand how to 
maximize the most important benefits that NFV transformation can bring: far faster and 
hugely more efficient network operations.  
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3 Executive Summary 

Network Functions Virtualisation (NFV) radically changes the way communication networks 
are designed, built and operated with the intention of reducing CAPEX and OPEX costs and 
increasing service agility. While the early drivers for NFV emphasized the benefits of 
hardware and CAPEX cost reduction, communication service providers (CSPs) are 
increasingly prioritizing the potential gains in operational efficiency and rapid service 
innovation.  

Service providers expect NFV to deliver faster development cycles with low operational risk. 
They also require efficient resource utilization, such as enabling application sharing and the 
reuse of virtual network function (VNF) components. CSPs also expect a more flexible and 
agile approach to network and capacity deployment that allows them to start small and 
scale on demand.  

The ability to realize the expected efficiency and agility benefits of NFV is determined by 
many different components of the NFV system, including the cloud infrastructure, the VNFs 
themselves and the CSP’s processes and organization. However, the biggest obstacle to 
achieving the full potential of NFV is the lack of maturity in the operational automation of 
VNFs; automating the lifecycle management of VNFs is a key requirement for NFV. 

This white paper focuses on the architecture of a VNF and how the VNF should interact with 
the cloud environment to simplify the automation of lifecycle management. We provide 
clear directions on the underlying functional requirements for the VNF to achieve such 
automation. By embracing the recommendations herein, the entire CSP community can 
achieve faster, error-free operational management of their cloud-based virtual network 
infrastructure.  

This white paper 

 Outlines the target scenario for VNF deployment.  

 Examines various aspects of lifecycle management for a typical VNF, identifying 
desired behaviours that ease operational automation. 

 Identifies key requirements on a VNF to achieve target operational simplicity.  

Realizing the full benefits of scale enabled by NFV requires adopting these 
recommendations as soon as possible. 

The work builds on the existing European Telecommunications Standards Institute (ETSI) 
NFV management and orchestration (MANO) framework, but the detailed ETSI NFV MANO 
interfaces or specific VNF implementation choices are not within the scope of this paper. 
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Customer-level provisioning, infrastructure and more generic network-related issues are 
also outside the scope.  

This document is primarily aimed at service providers and VNF developers who are involved 
in the design and operation of NFV networks, and the selection or creation of VNFs running 
in virtualised networks. It is also useful to strategic decision makers and managers wishing 
to better understand the operational aspects of NFV. 

The authors welcome feedback on this white paper and the evolution towards true cloud 
native NFV. Contact details are provided at the end.  
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4 Glossary 

Term Acronym Definition 

Virtual Network Function VNF In line with the ETSI definition. It corresponds to a 
function as defined by the 3GPP standards.  

Virtual Network Function 
Component 

VNFC In line with the ETSI definition. A VNFC represents 
the lowest granularity for the execution unit of a VNF 
to describe its expected behaviour when deployed in 
a cloud environment. Note that 

 Nothing is said about the functionalities that 
build a VNFC — those are implementation 
details (of no relevance).  

 A “cluster” is sometimes used as a synonym 
for VNFC. 

Microservice  An execution component with a known and defined 
interface. It is normally considered to be part of a 
VNF. 

Resources  Features/elements included in the NFVI (CPU, 
memory, disk and networking). 
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5 Introduction 

The telecom industry is undergoing a fundamental transformation as networks that 
traditionally relied on vendor-specific appliances are becoming more software-centric and 
cloud-based with the adoption of NFV. Service providers around the world have started to 
virtualise network functions and deploy them in cloud environments. As NFV momentum 
builds, traditional standards bodies such as the European Telecommunications Standards 
Institute (ETSI) and 3rd Generation Partnership Project (3GPP) have also worked to specify 
and consolidate NFV requirements, tools and systems.  

At the same time, the telecom services market is changing as the 5G era is poised to begin. 
Data traffic is growing tremendously, in terms of overall volume, per-device throughput 
and the number of devices connected by the Internet of Things (IoT). Traffic patterns are 
likely to become less predictable due to new applications and changes in customers 
behaviour and lifestyles. Deployment topologies for network applications need to address 
new demands such as very low latency (i.e., less than 5 ms)1. 

Moreover, efficiency (which includes resources used, cost and personnel) and agility are 
becoming increasingly important. The ability to deploy or reuse network functions within a 
few minutes and the capability to dynamically change the allocation of resources based on 
traffic demand or time-of-day factors, are fast becoming must-have criteria for network 
design. 

All industry players need to look at how their systems and processes evolve within this 
network transformation, and be prepared to take a critical and innovative approach to their 
NFV plans. This includes the design of the VNFs themselves. 

A critical factor in service providers’ ability to reap the operational efficiency benefits of 
NFV will be the extent to which they can automate the lifecycle management of VNFs. One 
of the attractions of NFV is that network applications can be instantiated rapidly so that 
new services can be launched in a matter of hours or days, rather than weeks or months 
(with dedicated appliances). Such speed, and the associated efficiency gains, require 
automation in the VNF lifecycle management.  

But service providers are discovering that not all VNFs are designed to enable operational 
automation. VNFs need to be architected, or re-architected, based on cloud-native design 
principles. Simply porting software from a specialized appliance into a cloud environment 
will not achieve the full benefits of NFV.  

 

1 Latency requirements will force a deployment model where VNFs run closer to the edge device.  
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6 Target Scenario 

To better frame the extent of the challenge faced by service providers and VNF developers 
as networks evolve towards 5G, we assume that a moderate-scale national network will 
face the following scale of change in cloud infrastructure requirements over the next 3 
years:  

 2017 2020+ 

Data Centers 2-3, centralized 50, central and  
edge-distributed 

vCPU numbers <10k >100k 

Component/VM count <1k <30k 

Table 1: Telco cloud scale changes over three years 

While a cloud infrastructure has the potential to provide the needed flexibility, and can 
therefore be the foundation for network evolution, infrastructure evolution alone will be 
somewhat pointless without both management layer tools for orchestration and 
appropriately designed network applications. 
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7 Desired Lifecycle Behaviour 

For operators to reach these targets, VNFs need to use resources efficiently and support 
operations automation. Automation is the key to simplifying the management of cloud 
network deployments. 

If we simply move software from a physical appliance to execute in a virtual machine (VM), 
that makes little practical difference to the complexity of managing the network. In fact, 
doing so without sufficient focus on automating lifecycle operations may add further layers 
and operational process steps, increasing costs despite replacing proprietary hardware with 
commodity off-the-shelf (COTS) alternatives. As networks get ever larger and more 
complex, it is increasingly important that the VNFs themselves are rearchitected to enable 
simple automation of such operations. 

It is also worth noting the difference between orchestration and automation as the two 
terms are often used in the same context and as synonyms, while in practice they are not. 

Automation can happen at many different levels. Some of them might not imply 
orchestration at all (as defined by ETSI2).  It is up to proper system analysis to define the 
level at which the automation will take place3 and to avoid overcomplicating the design by 
introducing closed loops at many conflicting levels. 

Orchestration, as defined by ETSI, is the management of the cloud infrastructure, balancing 
the needs of multiple VNFs and applications within defined parameters and a given load. 
This paper focuses on automation of the lifecycle of a VNF, which will form part of 
orchestration but is not a complete solution to that wider problem. We do not consider the 
orchestrator itself but instead concentrate on the VNF.  

In the following chapters, we consider the lifecycle of a VNF as comprising the following key 
operational phases 

 Deployment 

 Healing 

 Scaling/Move 

 Change/Upgrade  

 

2 In many VNFs, overload conditions can be handled by automation and congestion control but does not 
require orchestration. 
3 This analysis is mainly driven by the dynamics of the underlying traffic.  
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For each phase, we analyse the ideal VNF behaviour and characteristics needed to benefit 
from cloud infrastructure features while meeting target operational efficiency. 

These operational phases group several of the standardised ETSI operations from the NFV 
MANO framework (see Figure 1: Lifecycle operations). We have concentrated on the 
process of deploying the application software cluster, the collection of multiple instances 
of each VNFC that make up the VNF. [Subscriber-level provisioning is outside the scope of 
this paper.]  

 Fully automated lifecycle operations based on constant monitoring  

Deployment 

 Onboarding 

 Initial instantiation and configuration 

 VNF becomes operationally ready 

Change / Upgrade 

 Start new high level components and 
shut down low level components: 
“Scale out then scale in” 

 Domain-specific interactions to 
upgrade itself 

Healing 

 Recovering from failure 

 Reestablishing the virtual topology 

 Starting and embedding new virtual 
components, if needed 

Scaling/Move 

 Adapt to change in customer demand 
maintaining target KPIs 

 Change the virtual topology to reach a 
different steady state (Launch new 
components or move components) 

Figure 1: Lifecycle operations 

In addition to the ETSI-defined lifecycle operations, successful cloud VNF design must also 
consider 

 Overload conditions 

 Development cycles  

There are also other cloud operational actions across the entire application/cloud 
infrastructure/network stack, such as disaster recovery, backup and recovery, or cloud 
bursting that must be considered, although these are out of the scope of this paper.  
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7.1 Deployment 

This lifecycle operation includes the traditional on-boarding and instantiation, as well as 
the VNF cluster-level and service-level configuration. Once this phase is complete, the 
application will be ready to work in its operational environment.   

This initial stage of the VNF lifecycle should be completely automated. By encompassing 
initial service configuration — one of the still largely manual, time-consuming activities for 
many applications — the service provider is assured that the VNF has been deployed in an 
error-free manner. It is then ready for subsequent automated scaling or topology changes 
based on a known configuration model. 

This is important today when we have only a few central sites. It becomes even more 
essential when many more edge sites must be managed in a dynamic way or when more 
complex operational models are needed —multiple instances of a per-enterprise service 
hosted by a service provider but managed by the customer, for example 

Consider, for example, a URLLC4 application running on a service provider’s MEC (Multi-
access Edge Computing) cloud. Such an application may be dynamically created in any of 
tens or hundreds of edge sites. If they are to provide the desired low-latency behaviour 
then they also need careful resource allocation with physical location awareness. 

Another example would be a field trial. In this case, speed to market is key and possibly 
requires deploying in an existing production environment. 

In all cases, the common requirement is to minimise operational risk during the service 
lifetime. Only by successful automation of the initial deployment can a service provider 
attain the expected flexibility while at the same time reduce the complexity of later 
operational phases, and therefore the overall operational risk. 

7.2 Healing  

Per ETSI GS NFV-IFA 010 V2.1.1 (2016-04), VNF Healing is “a procedure that includes all 
virtualisation-related corrective actions to repair a faulty VNF, and/or its VNFC instances 
and internal VNF Virtual Link(s).” 

ETSI addresses healing from a management layer perspective. Here, we look at it from the 
VNF perspective.  

 

4 Ultra-reliable low-latency communications application 
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The assumption here is that the VNF is running in a ‘steady state’ situation and undefined 
external or internal conditions change the VNF’s state. The expected healing behaviour is 
to re-establish the previous topology as quickly as possible. 

The external conditions that force healing to happen might be unforeseen (e.g. a failure) or 
planned (e.g. driven by the need to deploy a configuration change). Healing relies on a 
model of the network and VNF, and the ability to continuously perform closed-loop actions 
to re-establish the desired steady-state.  

Healing may be achieved by immediately fixing a failed instance, or more generally, creating 
a new instance of the failed component. The failure can be detected at different levels and 
it is the responsibility of proper instrumentation (see 8.1) that these events are signalled in 
a timely manner to the related components.  

Healing is different from resiliency. Resiliency is a largely ‘static’ concept, which enables a 
certain function to achieve a defined service level. Traditional resiliency schemas are 
typically 1+1, N+1 or N+k. 

Healing refers to a more dynamic feature where the VNF and infrastructure can undertake 
operations to re-establish an existing topology, such as recovering to full capacity, by 
adding a new VNFC to a cluster, replacing that which was removed due to a host failure. 
The new component may receive a different configuration (e.g. a new IP address) from the 
cloud infrastructure. To handle this, the VNF should not rely on neither the physical 
characteristics of the infrastructure nor the expected behaviour of the NFV Infrastructure 
(e.g. how addresses are allocated). Such design is implicit to the cloud environment. 

The VNF shall be able to bring new instances of VNF components into the deployment 
topology, as needed to re-establish the target state. This implies the ability to properly 
configure them and integrate with surrounding systems (and if needed with the networking 
context), irrespective of whether these instances are created at the start of day (like in 
traditional resiliency models) or more dynamically as fits the cloud. Figure 2 depicts how 
the healing action flow works in practice. 

It is highly recommended that the interaction(s) needed with the management layer during 
healing is kept as light as possible since this operation does not require any change in the 
resources allocation and it is ‘simply’ re-establishing a target topology. 
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Figure 2: Healing Action Flow 

A final word about the concept of healing versus resiliency: under the right circumstances5, 
the healing process might completely replace the traditional static resiliency mechanisms. 

7.3 Scaling/Move 

This lifecycle operation describes the ability of a VNF to adapt to a change in the demand 
of the customers being served. This adaptation is achieved by looking to keep a defined 
target, such as a set of pre-defined KPIs, within an acceptable range or value. The desired 
behaviour is to do that within the most efficient way possible, from a resources perspective. 

The most obvious scenario is when the resource being considered is the CPU. The desired 
behaviour for scale is to keep the application occupying the lowest number of CPUs. In this 
case the VNF will act to change its topology to reach a different steady state (as opposed 
to trying to preserve when healing). This change typically implies a change in the number 
of components of the VNF. 

 

5 Strictly related to the speed of the healing process and application design 
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If the scale scenario requires the creation of new VNF components, then the same 
considerations given to the healing operation should apply; with new components being 
recognized and incorporated into the VNF cluster automatically. 

In general, scaling should be a completely automated operation. Efficient scaling with 
automation requires that 

 KPIs must accurately reflect resource use, and be updated in a timely manner. 

 The execution time of the scaling actions shall be in line with the dynamic of the 
characteristic to be controlled, or efficiency may be lost.  

 “Scale-in” action is essential for efficiency, but may be more complex than scale-
out if the VNF is stateful. 

 If the VNF has several distinct components, with different scaling logic based on 
different aspects of the traffic load (e.g. concurrent registrations vs transactions-
per-second), it shall be possible to change them independently.6 

 The change overhead (on the management of the infrastructure) shall be kept to a 
minimum to reduce complexity and aid timely reaction to changes in traffic load. 

The ideal condition and desired behaviour is where homogeneous components are evenly 
loaded7. 

The scaling mechanism should also implement algorithm and policies to avoid instability, 
such as flip-flopping or overconsumption of resources. 

It is worth mentioning that some scale operations may require that components of a VNF 
are instantiated differently across a geographically distributed execution environment. We 
refer this as “move.” Move operations might occur to keep a latency target on a set of 
customers served by the function, or for other reasons. 

Beside the specific trigger event, all the considerations about scaling and healing apply also 
to “move.” Note that the moved component might take a different flavour and scale per 
different policies8 enforced at its new location. 

Specific attention should be placed on the rebalancing of customers if they need to be 
moved as well. This move can happen to newly created or existing components.  

 

6 Respecting any cross-dependency if needed 
7 That is the optimal configuration assuming homogenous components are equally sized. 
8 The sizing of the moved component, for example, could be completely different  
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7.4 Change/Upgrade 

The upgrade of a VNF is a relevant part of its lifecycle and one that most often needs careful 
planning because of its complexity and the operational risk implied. It is very important to 
reduce, as much as possible, the complexity of upgrade to simplify and lower the risk of 
more frequent development cycles for the function or application9. 

In addition to software version upgrades, there are occasions when major service-level 
configuration changes may be required that are similar in scope and impact to an upgrade. 
Examples include permitted codec combinations, national dial plan changes or fundamental 
service set alterations. 

Traditional approaches to such upgrades/changes relied on the network being made up of 
multiple independent systems like switches and routers. The change is initially made in a 
first office application and a progressive roll-out executed after a stable period. Each such 
upgrade is manual however and the coordinated upgrade of a complete network may take 
many weeks across multiple maintenance windows. 

Cloud deployment offers an alternative, faster and lower risk path to perform these 
operations.  

At the foundation is the capability of a VNF to update its components independently, which 
can be achieved by replacing the current version of one component with the new one. 

This upgrade may be performed in-place, using the same VM and other resources already 
allocated, or via a scale-out/in operation to add an up-level node to the cluster and then 
removing a back-level node.  

The choice of upgrade style depends on the capabilities and service needs of the specific 
VNF and its components to be upgraded. In either case, the VNF must be able to operate 
correctly while at different revision levels.  

Where a VNF uses a distributed database for state storage, upgrading the version of a 
database itself requires more careful coordination to ensure that the system remains 
quorate in each site, and to ensure consistency in the data during the upgrade procedure. 

The cloud also offers the possibility of deploying very small instances of a function quickly 
and easily. Web-scale players10 use this to allow them to upgrade a small portion of their 
user base to a new level initially, monitor that community intensively to validate the 
upgrade is good, and then apply it more widely. Service providers can apply the same 
approach by temporarily segmenting their subscriber base during upgrade, and can achieve 

 

9 A quicker development time tracks more closely to market demand. 
10 Facebook, for example, use this approach as part of their DevOps process.  
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this with little or no cost in terms of resources11, reducing the risk of a flash-cut to the new 
system for the entire user base. This is sometimes referred to as Canary12 testing (as shown 
in Figure 3). 

 

Figure 3: Canary Testing 

Developing or replicating an automated upgrade procedure as a part of the on-boarding 
process to a NFVI/MANO stack for each service provider adds time, cost and risk to the on-
boarding process. Ideally, the function should self-manage the complex application 
domain-specific interactions for upgrade, exposing only easy-to-use application 
programming interfaces (APIs) to request the upgrade or change. 

7.5 Overload Conditions  

In an overload condition, the function may need to manage sudden and unusually high 
demand. In traditional system analysis terminology, this is equivalent to experiencing a step 
function in traffic load. 

This situation typically occurs because of a major network failure where an extremely large 
number of customers attempts to use the service (i.e. a signalling storm), or in a situation 
like a DDoS attack. 

 

11 One function is replaced by two whose capacity sums to the original one. 
12 See http://whatis.techtarget.com/definition/canary-canary-testing 
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Network functions should deal with this abnormal situation gracefully, avoiding instability 
flapping, and recovering in a finite and predictable amount of time. 

To achieve these goals: 

 Functions must keep working in saturation conditions. For example, using smart 
tactical overload protections mechanisms to reject some traffic early. 

 Functions should be able to accept and use additional resources that the cloud 
infrastructure makes available to them during overload, but should not pre-
reserve dedicated resources for this. 

The art of not reserving dedicated resources deserves a closer look. In legacy scenarios 
there is normally a portion of each node capacity dedicated to absorbing overload and 
engineering logic is to limit the resource consumptions to a certain threshold13. Capacity is 
engineered for each function separately. 

In a cloud environment, the VM resources are available beyond the obvious hardware 
constraints of a traditional physical appliance. The capacity engineering in such overload 
situations will be more efficient if the spare resources are treated as a shared pool. In 
general, one function’s action to limit overload will protect some others down the chain14, 
though which function is first to experience overload will depend on the exact nature of 
the load pattern. This phenomenon means that overload capacity can be shared, and 
potentially even reallocated away from less mission-critical functions (via scale-in if 
needed). However, each function should expect that resources for overload are contended, 
and must remain stable in a state of saturation 

Automated operational processes form an essential part of overload handling in the cloud 
— via scale-out/in, for example. In addition, for each VNF and the cloud to remain stable 
during and after overload, a VNF must 

 Intelligently discard load15, such that it can continue to process some load even 
under saturation. 

 Request additional resources to handle overload only when required. 

 Remain stable even if additional resources are not granted immediately. 

 

13 For example, CPU load in those conditions limited to a certain level.  
14 For example, an EPC function can protect the elements on the data chain. 
15 Simply discarding 50% of IP packets, for example, is likely to result in no traffic being successfully 
processed.  Protocol-level retries from adjacent elements may then prolong the overload to the point 
where the entire system is very slow to recover back to steady-state resource use. 
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 Ensure these additional resources are released promptly as load subsides. 

7.6 Development Cycle 

These automated lifecycle operations are necessary but not sufficient to achieve radical 
gains in operational agility. Service providers may also need to adopt more end-to-end 
process changes like continuous integration. These changes are complex and necessarily 
tailored to each organization and relevant stakeholders, so we concentrate here on high-
level observations relating only to the VNF architecture.   

All service providers likely need to review how parts of the complete development cycle 
are performed, and how they can shorten the path from an a new function request to actual 
service deployment16.  This effort will give benefits in terms of  

 The ability to respond to customers’ requirements in the most efficient and timely 
manner. 

 Lowering the overall complexity for a new function by leveraging existing functions 
instead of building complete new systems from scratch (yet another “box”). 

This effort will impose certain requirement on the VNFs, processes and related tools.  

With respect to the VNFs, in addition to focusing on lifecycle automation the VNF 
architecture should separate each component with clearly defined interfaces to adjacent 
components. This puts focus on allowing the reuse of individual components with minimal 
reworking of those affected by new requirements. This is commonly termed a 
microservice17 architecture. 

  

 

16 DevOps is the common terminology summarizing this requirement. 
17 See https://en.wikipedia.org/wiki/Microservices for a deeper explanation of microservices. 

https://en.wikipedia.org/wiki/Microservices
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8 VNF Design and Environment 

This section describes the key features a VNF should include to meet the target lifecycle 
behaviors. The aim is to describe those key features without specific reference to either 
technologies or development patterns.  

8.1 Instrumentation 

It is critical that all VNFs maintain and make available a complete set of information related 
to its deployment status and to the service it provides. The dynamic and timely nature of 
this information is essential for closed-loop automation to be effective. 

Examples of relevant information include 

 A topology of the functions — components, version(s), IP addresses, relevant 
identifiers 

 Health status 

 Load indications as measured or calculated at VNF component level. 

 Traffic/performance measurement at application and component levels e.g. 
messages processed and bandwidth used. 

 Service specific information suitable for detailed Quality of Experience (QoE) 
analyses e.g. measured latency or round-trip time (RTT). 

 Key load distribution metrics. 

VNFs should make this information available 

 Via well-documented, open (royalty free) APIs and, possibly, integrated with most 
common monitoring and analytical tools18 

 With a sampling time appropriate to the application domain (which can be less 
than seconds). 

 In a reliable way for all the foreseen service conditions, including overload. 

It is preferable to have all the information available via a single VNF-level entry point (in 
addition to or instead of VNFC-level entry point) — e.g. a specific KPI function component 

 

18 Such as Grafana, Splunk, Elastic stack 
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— but its failure shall not compromise the VNF’s main functional behaviour19. This avoids 
having to re-implement complex logic to combine KPIs in the correct manner as part of on-
boarding to each NFVI and MANO. 

 

Figure 4: Cluster versus instance load 

High quality built-in instrumentation assists all other lifecycle operations and can also 
replace hardware-based probes. This is particularly true of traffic tracing, which in the cloud 
context means always-on recording of internal events as well as protocol flows.    

With tracing built into a VNF, problem diagnostics are not reliant on having probes in the 
right place, at the right time. This results in faster resolution without needing to reproduce 
the problem. It also avoids having to hairpin traffic in/out of each VNF to costly high-
performance line trace probes, which may be external to the cloud virtual switch domain, 
wasting bandwidth and other resources.  

Good instrumentation and built-in tracing are expected, if properly implemented, to offer 
a valuable opportunity to reduce operational complexity and costs. This is a fundamental 
requirement for any VNF to achieve the desired levels of automation and operational 
savings. 

8.2 Self-Management and Abstraction 

VNFs shall not assume a higher level of management (e.g. orchestration in the ETSI NFV 
MANO framework) or support any level of complexity or granularity of control to manage 

 

19 This reference point and related functions can be regarded as the control part of the application.   
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lifecycle operations for the application. Where application domain-specific knowledge is 
required to complete an action correctly, the VNF itself should handle that complexity. 

This level of abstraction is reached with an API is as simple as possible and informative 
enough to enable a more complicated flow of operation at the orchestration level. 

Examples of operations that require more complicated orchestrated flows include 

 upgrade, check and roll-out.  

 Scaling overflow (when a new VNF(C) instance is required). 

 Healing, after one or more host failures. 

This approach is similar and extends the ETSI MANO concept whereby the VNF manager 
(VNFM) provides abstraction of the function towards the upper layer management systems. 
The exact labelling and split of responsibility between VNFM and VNF is not important so 
long as the package delivered to the service provider handles any VNF domain-specifics, 
such as VNFC start-up phasing and clustering, without requiring complex per-deployment 
scripting.      

 

Figure 5: Simplifying Operations Automation 
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8.3 Discovery and Announcement  

Efficient cloud deployment models result in a very dynamic network status, with each node 
and service potentially scaling or being upgraded independently, in addition to network 
topology changes due to site or cloud failures.   

Relying on manual or scripted mechanisms to keep pace with such change is not tenable 
therefore VNFs should provide mechanisms to manage those dynamics.    

Specifically, VNF components should 

 Expose and announce changes for their main integration points and adjacent 
internal components. 

 Monitor for topology announcement and act accordingly 

 Expose and announce changes to the physical or external components they 
integrate with20. 

 Document failure detection and recovery mechanisms that can be automated via 
standard actions in adjacent components – for example, retry to the next DNS SRV 
record for the IMS core. 

 Incorporate location awareness and selection and local feedback loops, where 
needed for URLLC applications; to avoid long feedback cycles if resource/location 
selection always route to a central site, for example. 

8.4 Scaling and Load Distribution 

VNFs typically meet demand by horizontal scaling (i.e. by adding or taking down instances 
of the required components). For this to function well in a cloud with efficient resource 
usage, VNFs need to 

 Spread load across the multiple VNFC instances. 

 Evenly distribute the load on homogeneous components under normal traffic 
patterns. 

 Reallocate load during scaling operations. 

 Avoid focused overload (such as DDoS) impacting the service for all users 

 

20 For example, an external DNS. 
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Some VNF deployments may also need to be able to operate in heterogeneous 
environments, where different-sized components are needed on different cloud platforms 
deployed in edge and core sites.   

It is therefore very important that each VNF implements efficient and intelligent load 
distribution policies. To achieve this, several aspects of traffic and platform performance 
need to be considered into the load balancing mechanisms. 

The load balancing mechanisms must be purely software based. This is to avoid both 
bottlenecks and the constraints that come from deploying physical functions (as opposed 
to using pure software operations).  

VNFs should support load distribution across all available nodes within a cluster. This 
balancing may be pure “equal weight” between instances, or incorporate location 
awareness, preferring local nodes in an edge site with fall back to central nodes. This should 
be achieved without need for special processing paths to achieve good load balancing, as 
this reduces complexity. The techniques used to do this may vary by VNF but can include 
sharding of the user population statically or dynamically (via short lifetime association of 
per message/transaction21/registration), often coupled with single or multi-horizon routing 
or anycast (as discovery mechanisms), and the retry mechanisms built into many standard 
protocol flows.   

Regardless of load balancing implementation (for a specific VNF), it must satisfy the 
following criteria 

 Dependencies on adjacent functions, including any internal components using the 
same mechanisms22, should be standards-based and clearly documented23. 

 Any external systems that form part of this load balancing, such as DNS, should be 
updated as part of the automated operational processes used to manage this VNF. 

 It must be possible to tailor the load balancing mechanism to ensure efficient 
routing across multiple sites in a distributed system24 

 

21 For example, first interaction in a transaction routes to any available node, then subsequent parts of 
same transaction are routed back to same node. 
22 See as well Discovery and Announcement  
23 DNS with retry to alternate SRV records, or anycast, for example.  
24 Such as ‘hair-pinning’ media at the edge 
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 The breakdown of the VNF into sub-components should not introduce undue 
inefficiencies in the routing of requests between sites or between hosts/VMs 
within a site25. 

8.5 Efficient Resource Usage 

It should be a clear target and major performance indicator for any VNF to make efficient 
use of the cloud resources. In this context, all the resources required by all the VNFs are 
considered. This search for efficiency depends on multiple criteria and, of course, on the 
efficiency of any single component. 

Note that this requirement for efficiency has always been relevant and only becomes more 
significant in cloud deployments. 

8.6 Minimum Resource Footprint  

When considering the resource required to effectively run any VNF, it is important to 
ensure that 

 VNFs tightly fit the demand, without waste, at any point in time. 

 VNFs scale down elegantly; very small demand should be covered by a very small 
footprint. 

 Component instances are as small as possible, while remaining efficient, for 
optimal cloud utilization. 

 Only needed resources are requested26. 

 Granted resources are used efficiently27. 

8.7 Dynamic Scalability  

The process for adding or removing VNF components should be as simple and as fast as 
possible. This allows resource usage to closely follow any demand curve. 

VNF components should scale per their own needs to meet this target.  

 

25 Particular care is required for user-plan functions to avoid multiple “east-west” routing between 
subcomponents 
26 Assuming no over-commitment is used, which typically is how network functions are deployed  
27 If a VNF is poorly implemented, putting it in the cloud will not make it scale well – it will just use more 
cloud resource! 
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Note that dynamic VNF scaling over short time periods may require the introduction of 
technologies that enable vary rapid spinning up and down (e.g. containers). 

8.8 Resiliency Mechanism  

The ideal VNF design for cloud uses N+k active-active redundancy model where both N and 
k are configurable. If suitedd to the service delivered by the VNF, the N+k cluster should be 
able to be spread across sites for maximum hardware efficiency28. 

 

Figure 6: An example approach to move from 1+1 to N+k 

 

8.9 Management vs. Processing Balance  

VNFs should maintain a fair balance between resources dedicated to its management and 
to those processing the demand. In a scale-out scenario, the needs of demand processing 
should dominate. 

 

28 For example, a 6-site distributed N+k model, with 20% local redundancy as well, uses 1.44N, compared 
with 4N for traditional 1+1 resiliency both locally and across 2 sites; a saving of nearly 3x. 
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8.10 Contention of Resources 

In general, network functions tend to peak at the same time, preventing use of over-
committed resources. With the advent of new cloud and service paradigms (such as 
network slicing), a service provider may possibly opt to use contention in the following ways 

 All VNFs contend for spare resources from a common pool to handle overload29.  

 Light overprovisioning for some resource types30 between network slices 
(especially for higher-layers of the service stack). 

VNFs should provide predictable behaviours when working with a contention of resources. 

8.11 State Handling 

The ideal internal design for a cloud native VNF will usually be to separate state into a 
distributed database, with stateless compute nodes processing traffic based on, and 
updating, that stored state. This architecture eases load balancing and separates the scaling 
of the compute cluster and database processing per the dynamic needs of the traffic model. 

This ideal model for stateless processing nodes may not be possible for all VNFs. However, 
state should always be clearly identified and sand-boxed to a limited set of sub-components 
within a VNF. This keeps all the expensive operations related to the protection, replica and 
recovery of the state to a minimum, and eases the automation of operational tasks as far 
as possible.   

8.12 Rigorous API and Database Versioning  

Cloud network functions are typically split into multiple subcomponents, or microservices. 
For this modular approach to work well with automated operations such as scaling, healing 
and upgrade across multiple sites, all interfaces to the function and between 
subcomponents must be 

 Clearly defined and documented. 

 Allow different versions (at least N and N+1) to coexist with defined behaviour to 
enable an in-place upgrade.   

In this context, the database schema used to store state is effectively an internal interface 
that must also be versioned. This is exposed via APIs to the VNF components that store 

 

29 See overload section 
30 Contention may be foreseen for CPU not considered for memory or storage;  if the minimum VM size for 
some components of a slice is larger than required for the total traffic envisaged, for example.  
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state, rather than directly exposing the internal schemas or native APIs of the databases in 
these components. By decoupling APIs from schemas and making them technology neutral, 
it becomes possible to safely evolve database schemas or change database technologies, 
hiding these changes behind versioned APIs. 

Up-level capabilities should only be used across an interface if both sides have agreed to 
their use. Many 3GPP and other standards incorporate such capabilities and similar logic 
should be applied to internal interfaces too. 

9 Additional Considerations 

In addition to the VNF features discussed in the previous section, there are several other 
considerations that will affect operations automation.   

9.1 Minimise Special Paths 

Complex but rarely used processes and code paths – such as for disaster recovery – are 
prone to failure, with potentially serious effect.  

Cloud VNFs should be designed with minimal special code paths; recovery from failure 
should be architected into the mainline paths.  

This requires a different mindset to many traditional physical systems, though the 
principles outlined above will help. For example, segregating state into a distributed, 
resilient database should eliminate the complex “sync” operations typically used between 
appliances with local state stores, and all the risks of failure or any need for “resync.” 

A cloud VNF should be aware of the declarative model of desired state for its operation, 
and work towards bringing its internal state to that desired state as the mainline code path. 
Subscriber data not in cache, for example, is fetched if it is not found – whether that is on 
the first transaction from the subscriber or after a cache failure. And recovery from failure 
of a compute process can be via a simple transaction retry. 

In short, parts of the cloud will fail and a cloud VNF shall handle such events as part of its 
normal processing. 

9.2 Licensing  

Cloud environments shall be dynamic, with resources allocated on demand and processes 
potentially scaled or moved frequently. Traditional appliance-based licensing systems do 
not cope well with such environments. Typical issues include trying to limit process 
instances, or locking licenses to physical hosts or VM IDs.   
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VNF licensing should not impose limits, instead nurturing a fully automated cloud 
deployment model. Cloud native licensing models should also lend themselves to various 
business models, such as pay-as-you-grow or license pooling.  

Note that good instrumentation of the VNF certainly eases implementation of a flexible and 
cloud-friendly licensing model. 

9.3 Database Considerations 

There are many good distributed databases available for VNFs to use to store state and 
configuration in a cloud architectures. But databases are not equal, particularly with 
regards to their consistency and availability, or partition tolerance (see the CAP theorem31), 
or the balance of read/write performance requirements.  

Different VNFs, or components of one VNF, may require different databases to fit with the 
resiliency characteristics required for the service. At the same time, service providers may 
be concerned about the proliferation of database technologies causing increased load to 
understand, manage and secure each variant. 

An ideal cloud VNF will have clearly defined APIs to the underlying database it requires, 
with clear definition of the CAP and other characteristics. The service provider then has the 
option to plumb the VNF into the preferred database technology.  

9.4 Security 

Security is a very wide topic which we cannot cover in depth in this paper. However, a few 
high-level implications on VNF design for the cloud are worth pointing out: 

 Each VNF should document and utilize an appropriate security framework and 
policy which can be applied automatically and without error across all lifecycle 
operations  

 The inherent distributed nature of a cloud VNF calls for proper protection 
(typically encryption) of all communication among the components 

 Denial of Service attacks may be mitigated in a cloud environment via dynamic 
scale-out under appropriate policy controls, more quickly and easily than has been 
possible for physical appliances.  

There is no “obviously right” answer for security. Each service provider must assess their 
own needs and constraints. The only certainty is that any pretence of security via physical 
access control or obscure interfaces – both of dubious protection in any case as shown in 
 

31 https://en.wikipedia.org/wiki/CAP_theorem 
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widely-reported SS7 network attacks – certainly do not apply to an all IP-based publicly 
accessible cloud.  
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10 Summary of Operational Factors 

Table 2 summarizes the relative importance of the various operational automation aspects 
for each lifecycle operation. 

 Deploy Healing 
Scale/ 
Move 

Change/ 
Upgrade Overload 

Devops 
Cycle 

Instrumentation 

      

Self-
management 

      

Discovery 

      

Load-balancing 

      

Resource use 

      

Minimize 
Special Paths 

      

State handling 

      

Versioning 

      

 

   Critical          Important    Less Important 

Table 2: Importance of automation aspects in lifecycle operation 
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11 Conclusions 

It is very clear that the telco industry is undergoing a deep transformation, both 
technological and cultural, which will require a radical mind shift in all the players, current 
and future. From a technological perspective, the shift moves us into a world that is 
software centric with extensive automation of operations. Faster development cycles with 
low operational risk, efficient resource utilization and scaling on-demand are the key 
benefits being sought. For this shift to be successful, the automated operations must 
understand the domain-specific characteristics of each VNF. Failure to do so is likely to lead 
to sub-optimal results. This is most efficiently achieved by embedding application domain-
specific logic within the VNF itself (as far as possible), so that it can be reused across 
different cloud environments and different service providers with minimal effort or risk of 
error.  

In future, VNFs may need to evolve to operate not just in VM-based Infrastructure-as-a-
Service (IaaS) clouds but also containerized or even serverless models. Cloud-bursting and 
the sharing of resources between IT and NFV payloads promise further optimization of the 
resource requirements for service providers. 

Culturally, the shift to cloud requires that engineering, planning and operations teams and 
processes (not only internally but across all the stakeholders involved) come closer 
together, applying scarce people resources to high-value operations and decision making 
rather than more menial tasks. Automation enables this, but wider organizational buy-in is 
required to move to a true DevOps model. In this paper, we have laid out the application-
layer groundwork necessary for this to occur, but each service provider must define in 
further detail how they will make their processes and organization more agile, with specific 
influences like market size, market position and strategic targets also in mind. 

While it is unrealistic to expect that the transition to more efficient cloud VNFs will happen 
in one easy step, all the players in the telco arena should have a clear focus on the benefits 
they are targeting.  If executed correctly, cloud migration will be a win-win situation for 
everyone involved. 
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For further questions and feedback please contact: 

Roberto Muggianu, Senior Network Architect, Telia Company 
roberto.muggianu@teliacompany.com 

Johanna Nieminen, Senior Network Architect, Telia Company 
johanna.x.nieminen@teliacompany.com 

Paul Brittain, VP Product Strategy, Metaswitch Networks 
Paul.Brittain@metaswitch.com 

Response times may vary. 
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