
Network Functions Virtualization is at the heart of the
most fundamental transformation ever undertaken by the
communications services industry, with profound impacts on
technology planning, network engineering, operations and
procurement. And despite the enormous upheaval that NFV
brings to their business, virtually every network operator in the
world today accepts its vital importance to their future, and many
have already made great progress in their transformation to a
software-centric future.

INTRODUCTION
The approach to NFV taken by the majority of network operators
appears to be driven mainly from a bottom-up, technology-
oriented perspective. This narrative starts with the observation
that most network functions can be provided by software running
on commercial off-the-shelf server hardware at considerably
lower cost than traditional proprietary purpose-built hardware.
The modern way to deploy software is with virtualization, and for
virtualization at scale we need a cloud environment. If we are
deploying software in a cloud environment, then we can automate
operations, and save ourselves a ton of operational expense.

And because the service is implemented entirely in software, we
should be able to innovate more rapidly than we could before and
drive new service revenues.

But there is another perspective on NFV, which is a services-
oriented top-down view. This perspective can most clearly be
illustrated by the following question: modestly funded start-ups
with a few tens of engineers and very limited marketing budgets
are building software systems in the cloud that deliver rapidly-
evolving and fast-scaling services that are attracting tens or
hundreds of millions of users and taking big bites out of traditional
network operator revenues (e.g. WhatsApp) – how on earth are
they able to do that?

This white paper is about the software techniques that the industry
needs to adopt to do NFV right. NFV done right will transform
the economics of service delivery, simplify the integration and
deployment of new service capabilities, accelerate the creation
and progressive enhancement of new services, and enable
services to be delivered effectively at any scale. Not done right,
NFV could fail spectacularly to deliver any return on a very large
investment.

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV

THE APPLICATION OF CLOUD NATIVE
DESIGN PRINCIPLES TO NETWORK
FUNCTIONS VIRTUALIZATION
Martin Taylor. CTO, Metaswitch Networks

A BRIEF HISTORY OF VIRTUALIZATION
AND CLOUD
Virtualization has a long history in the computer industry, and
first became a mainstream commercial technology in the mid-
1960s on IBM mainframes. The modern era of virtualization was
ushered in by the addition of hardware support for virtualization
on x86 processors by Intel in 2005-06, which paved the way for the
introduction of successful hypervisor products such as VMware.
Up to this point, IT shops had installed a separate physical machine
for each different server application that they deployed, with the
result that most machines were severely under-utilized. With a
hypervisor they could safely deploy multiple server applications
per host, consolidating their resources and achieving very
substantial Capex and Opex savings.

At that time, it was common to see a mix of many different
operating systems in use for IT applications: various flavors of Unix,
Solaris, Windows and early versions of Linux. Naturally, there
was a requirement to be able to mix applications with different
operating systems on the same physical host. So hypervisors were
designed to expose to applications an emulation of a complete
physical x86 server: a virtual machine. The server application,
together with the operating system it depends on, runs inside
the virtual machine, safely and securely partitioned from other
server applications and their supporting guest operating systems
deployed on the same host.

The business case for virtualization was a compelling one,
and by 2013 more than half of all IT workloads were running
virtualized. IT shops began to view their physical servers not so
much as a collection of individual machines, but more as a pool
of computing resources. When they deploy a server application,
they don’t much care which particular machine it runs on, so
long as it has sufficient resources to perform as required. This is
led to the introduction of infrastructure software solutions that
treat a collection of x86 machines as an interchangeable pool of
resources, and manages the deployment of applications on it: a
cloud.

Cloud technology enables compute resources to be treated as
a utility, and this opens up the possibility of a market in which
compute power can be bought and sold: the public cloud.
Economies of scale mean that very large providers of public cloud
services can offer compute power at considerably lower cost than
can be achieved in small-scale private clouds. As a result, some IT
shops now choose to deploy some or all of their applications on
public cloud services.

For most of the first decade of cloud technology, the great majority
of applications deployed in both public and private clouds were
originally written to run on dedicated, bare metal servers. Cloud
services offering virtual machines that emulate physical servers,
so called Infrastructure as a Service, provide an ideal environment
into which such applications can be moved.

THE EMERGENCE OF CLOUD NATIVE
The availability of inexpensive pay-as-you-go compute power
in large-scale public clouds opened up a completely new kind
of opportunity for entrepreneurs: the ability to create network-
based services that could be offered to the public at scale,
particularly in the realms of social media, messaging and media
distribution. In particular, it massively reduced the amount of
capital risk associated with starting up and scaling such services.
The new ventures that set out to take advantage of this opportunity
were not writing software to run on dedicated servers, and
then deploying it on virtual machines in the cloud. Instead,
they viewed the cloud as an entirely new kind of distributed
computing environment that opened up exciting possibilities for
new application architectures.

What these cloud application developers sought, above all,
was scalability. They wanted to be able to deploy systems that
would scale rapidly through many orders of magnitude with as
few limitations as possible, and without the requirement to
re-visit fundamental aspects of application architecture along
the way. They also wanted resilience and fault tolerance; they
recognized that failures can occur at every level of the stack, from
individual servers to entire data centers, and from individual
virtual machines to entire cloud instances, and they needed to
come up with software architectures that would survive multiple
such failures and continue to deliver services. But they didn’t
want to buy fault tolerance in the traditional way by doubling up
resource usage. Rather, they expected to absorb the impact of
failures through modest amounts of surplus capacity combined
with automated self-healing capabilities.

In addition to scalability and fault tolerance, cloud application
developers wanted to be able to evolve their software solutions
quickly to meet new and emerging service requirements. In
practice this meant making it possible for multiple teams to work
on the software simultaneously without tripping over each other.
These were difficult and challenging problems to solve, but the
successful pioneers in cloud-based application development
employed some of the best brains in the software industry, and
there was a good deal of cooperation and sharing of learnings
among them. The design patterns of what came to be known
as cloud native software architecture have emerged over the last
few years as a consensus within this community.

THE KEY FEATURES OF CLOUD NATIVE
ARCHITECTURE

Stateless Processing
The requirement for easy scaling across many orders of magnitude
is the driver behind the single most important concept in cloud
native architecture: stateless processing.

The concept of stateless processing can be described as follows.
A transaction processing system is divided into two tiers. One tier

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV2

comprises a variable number of identical transaction processing
elements that do not store any long-lasting state. The other
tier comprises a scalable storage system based on a variable
number of elements that store state information securely and
redundantly. The transaction processing elements read relevant
state information from the state store as required to process any
given transaction, and if any state information is updated in the
course of processing that transaction, they write the updated
state back to the store.

It’s probably not obvious from reading the description above how
this approach enables massive scalability. So let’s use a practical
example to illustrate.

Suppose we are developing an e-commerce application. The
application needs to support a number of HTTP transaction
types including login to account, add item to shopping basket,
review shopping basket, checkout etc. The application code that
processes these transactions needs access to certain information
(i.e. “state”), for example details of the user’s account and the
current contents of the shopping basket. In a traditional application
architecture, this state would be kept in the application’s local
storage.

The first problem that we need to solve is how to provide fault
tolerance. If a server dies, then any local state that is stored in it is
lost. The physical servers that are deployed in cloud environments
are not particularly reliable, and failures are fairly frequent.
Users get pretty upset if they’ve spent 30 minutes online grocery
shopping, and their shopping basket suddenly disappears. We
face a difficult choice here: either we accept the risk that a small
proportion of e-commerce sessions will fail due to equipment
failure, or we have to deploy a second server to act as a backup,
and maintain a shadow copy of all the state on it – which doubles
the amount of hardware resources the application is consuming.

Now suppose that we need this application to support millions of
concurrent online shopping sessions. A single server (or active-
standby pair of servers) is not going to be able to handle the load,
so we need to deploy a number of servers. The problem that
we now need to solve is that each incoming HTTP request needs
to be directed to the correct server, the one that knows about
this particular user and session. We therefore need to deploy
something like a load-balancer in front of our collection of servers,
and the load-balancer needs to be able to identify the user and
session from the information in each incoming request, remember
which server is handling each user session, and re-direct each
request to the correct server. The load-balancer is therefore
quite a complex application in its own right. And because it’s
potentially a single point of failure, it needs to be fault tolerant,
which makes it even more complex. But the biggest single issue
here is that the performance and capacity of the load-balancer
puts an upper limit on the transaction processing load that we can
handle. What happens if our e-commerce site is wildly successful
and we cannot obtain a load-balancer that is powerful enough to
handle all of the demand?

With the stateless processing approach, we implement the
elements that process HTTP transactions without any local
state storage, and have them read and write state to and from
a separate storage system. When an HTTP request arrives at
one of these elements, it extracts some information from the
request that uniquely identifies the session (for example, from
a cookie), and then uses this information to retrieve the current
state associated with this session (user account details, contents
of shopping basket) from the state store. If the transaction has
the effect of changing any of this state, for example because the
user added an item to her shopping basket, then the transaction
processing element writes the updated state back to the state
store.

The difference now is that any incoming HTTP request can be
handled by any arbitrary instance of the transaction processing
element. We do not have to steer each request to the instance
that “knows” about it, because knowledge about each session is
available to every processing element instance from the state store.
We still need some way to balance the load of incoming requests
across the population of transaction processing elements, but we
can do this without having to deploy a load-balancer, for example
by leveraging DNS to perform dumb round-robin load balancing.
By eliminating the load-balancer, we’ve eliminated the limiting
factor on scale. We also don’t need to worry about any individual
transaction processing element failing. Such failures do not result
in the loss of any state, because all the state is stored separately.

The stateless approach is therefore inherently fault tolerant. If any
processing element instance dies or becomes unresponsive, then
the built-in re-try mechanisms of HTTP will result in subsequent
attempts being handled by another instance. So long as we have
a modest amount of performance headroom in our population of
processing elements, the failure of any one of them has no impact
on the service: the load that it would otherwise have handled is
simply re-distributed across the remaining instances. We can very
easily extend this fault tolerance mechanism across multiple data
centers, so that even the loss of an entire data center will not
bring down our service.

Individual processing elements can be quite small in scale: we
can keep the architecture of these elements simple by not
worrying about trying to make them very powerful, for example
with support for lots of multi-core parallelism. We handle scaling
by deploying as many processing element instances as we need
to handle the load, an approach which is known as “scale out”
(in contrast to “scale up”). We can also change the number of
processing elements on the fly (scaling both out and in) in response
to changing load – enabling us to make the most efficient use of
compute resources at all times.

All of this depends, of course, on our ability to build and deploy
a highly scalable and very fault-tolerant storage system in
which to keep all of our application state. Because this is an
absolutely fundamental requirement of the stateless processing
design pattern, there has been a lot of investment in this area,
particularly by the main Web-scale players. Many of the solutions

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV3

that they have built to address this need are available as open
source. For example, one of the leading distributed state stores,
Apache Cassandra, was originally developed at Facebook, and
is now used by Netflix, Twitter, Instagram and Webex among
many others. Test results published by Netflix show Cassandra
performance scaling linearly with number of nodes up to 300, and
handling over a million writes per second with 3-way redundancy
– more than enough to handle the needs of most telco-style
services even with many hundreds of millions of subscribers.
Cassandra includes support for efficient state replication between
geographically separate locations, and therefore provides an
excellent basis for extremely resilient geo-redundant services.

It’s perhaps worth pointing out that stateless processing is by no
means the only design pattern seen in cloud native applications,
although it’s definitely the most prominent. Other design
patterns worth mentioning include stream processing (based on
frameworks such as Heron or Storm) and serverless processing,
best exemplified by Amazon Lambda. These have only emerged
relatively recently, and won’t be discussed further in this
document – but they definitely have potential to advance the
state of the art in Network Functions Virtualization.

Microservices
After stateless processing, the second most frequently cited aspect
of the cloud native approach to software design is microservices,
defined as follows:

Microservices is a software architecture style in which
complex applications are composed of small, independent
processes communicating with each other using language-
agnostic APIs. These services are highly decoupled and focus
on doing a single small task well, facilitating a modular
approach to system-building.

Microservices is a big topic: entire books have been written about
it, and we only have room for a brief summary here. The main
benefits of a microservices approach are as follows:

Composability and reusability. Microservices encourages the
development of modular software components each of which
performs a very specific task that is exposed via a well-documented
API. Components built this way lend themselves to easy re-use in
a variety of different circumstances, enabling applications to be
“composed” by combining a suitable set of microservices glued
together by a lightweight front end.

Technology heterogeneity. Microservices enables development
teams to pick the best software technology and language for the
implementation of any given application component, without
worrying about the rest of the system. Components are loosely-
coupled, typically via Web services APIs, and this hides their
implementation details.

Efficient scaling. Each microservice can be designed to scale out
independently of other microservices associated with a given
application, which typically means we get more efficient use of
resources than with monolithic applications where all functions
have to scale in lockstep.

Ease of development and deployment. It’s possible to make
incremental enhancements to microservices and deploy these
to production independently of other microservices. If any
problems arise from the new version of a given microservices
component, the change can quickly be rolled back. This allows
for a DevOps approach to the progressive enhancement of an
overall application, enabling innovations to be introduced much
more rapidly than with monolithic applications which inevitably
accumulate many changes between releases, requiring far more
comprehensive testing.

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV4

Those with a long history in software may be tempted to
dismiss microservices as just a new label for Service-Oriented
Architecture (SOA), which has been around for many years. There
are, of course, many similarities and some practitioners talk about
microservices as “fine-grained SOA”. The main difference from
SOA is the size and scope of the service components: making
them fine-grained improves composability, reusability and ease
of deployment. Making them too fine-grained may introduce
unacceptable inefficiency in the application, so getting the
balance right is important.

The microservices approach is not a panacea. Highly distributed
loosely-coupled systems bring their own complications, and
the complexity of a large application does not disappear just
because it is reduced to a set of relatively simple components.
Nevertheless, most of the Web-scale players are strongly bought
into microservices, none more so than Netflix. Following a
disastrous outage in 2008, Netflix started transitioning away from
a single monolithic Web application, and has now deployed in
excess of 500 microservices to support their Web presence and
business operations. Netflix has blogged extensively about its
microservices journey, and this material is essential reading for
anyone wanting to get under the skin of this approach to system
design.

Open Source Software
Making use of open source software components is not in any
sense a fundamental requirement of a cloud native architecture,
but it’s an observable fact that most developers of cloud native
applications leverage open source software very effectively.

We’ve already mentioned one open source project that is widely
used in cloud native applications – the scalable state storage
database Apache Cassandra. There are many other open source
solutions for state storage, including MongoDB, Couchbase and
Memcached. And there are open source solutions for many
other kinds of generic functions that are needed for cloud native
applications and their management: Web servers (Apache
HTTP Server, NGINX), protocol stacks (libcurl, snmpd), client-
side scripting (jQuery), secure communications (OpenSSL),
DNS (dnsmasq), monitoring (monit), log collection / storage /
visualization (Elasticsearch, Fluentd, Kibana) and so on.

Many of these open source projects have substantial communities
supporting them and many years of broad exposure in the field,
so they can be incorporated into cloud native applications with
confidence. Occasionally, using these kinds of open source
software in some new application exposes bugs or deficiencies
which the community behind the project may not view as high
priorities to fix. In that case, the developers of the application
usually address the problem themselves, and upstream the fixes.
Making necessary improvements in open source components of
a cloud native application is one of the overheads that should be
taken into account in the development planning process.

Making wise use of open source software can completely
transform the economics of developing and supporting complex

Web-scale applications by dramatically reducing the amount
of new code that needs to be written, and by leveraging the
community to provide support and bug fixes. Relatively small
teams of developers can complete substantial projects much
faster and with fewer bugs than if they had to write all of the
application code, and can focus on the most important aspect of
new applications: innovation.

Containers
In the discussion above on the history of virtualization, we
described the hypervisor and its support for the deployment of
application software in virtual machines. But there is an alternative
approach to virtualization that happens to be particularly well-
suited to cloud native applications: Linux containers.

Containers leverage a long-standing method for partitioning
in Linux known as “namespaces”, which provides separation of
different processes, filesystems and network stacks. A container
is a secure partition based on namespaces in which one or more
Linux processes run, supported by the Linux kernel installed on
the host system.

The main difference between a container and a virtual machine is
that a virtual machine needs a complete operating system installed
in it to support the application, whereas a container only needs to
package up the application software, with the optional addition
of any application-specific OS dependencies, and leverages the
operating system kernel running on the host.

Containers offer a number of advantages over virtual machines,
including the following:

Lower overhead. Because they do not (in most cases) contain
complete operating system images, containers have a far smaller
memory footprint than virtual machines, and therefore consume
considerably less hardware resources. Their small footprint may
make it feasible to deploy instances of software to serve single
tenants for some kinds of services, and this could simplify the
design of the software very considerably.

Startup speed. Virtual machine images are large because they
include a complete guest operating system, and the time taken
to start a new VM is largely dictated by the time taken to copy
its image to the host on which it is to run, which may take many
seconds. By contrast, container images tend to be very small, and
they can often start up in less than 50 ms. This enables cloud
native applications to scale and heal extremely quickly, and also
allows for new approaches to system design in which containers
are spawned to process individual transactions, and are disposed
of as soon as the transaction is complete.

Reduced maintenance. Virtual machines contain guest
operating systems, and these must be maintained, for example
to apply security patches to protect against recently discovered
vulnerabilities. Containers require no equivalent maintenance.

Ease of deployment. Containers provide a high degree of

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV5

portability across operating environments, making it easy to
move a containerized application from development through
testing into production without having to make changes along
the way. Furthermore, containers allow workloads to be moved
easily between private and public cloud environments. Being
much more straightforward to deploy in the cloud than virtual
machines, they are also much easier to orchestrate.

If you need to deploy an application that was originally designed
to run on a dedicated server into a cloud environment, chances
are you will need to deploy it in a virtual machine because of
operating system or hardware dependencies. But if you are
writing new software to run in a cloud environment (in other
words, cloud native software), then it’s very easy to do so in a
container-friendly way. Most cloud native software in the Web-
scale world today is deployed in containers because of the
compelling benefits they offer.

Design for Orchestration
Cloud native applications tend to comprise a substantial number
of different software components, partly because they usually
implement stateless processing (and therefore have separate
components for transaction processing and state storage), and
partly because they are usually decomposed into a number of
microservices. Furthermore, each microservice is designed to scale
out, and so multiple instances of each microservice component
need to be deployed to handle the load on the application. For
these reasons, deploying a cloud native application at scale may
require the instantiation of many tens or hundreds of virtual
machines or containers.

It is totally infeasible to carry out the deployment of such an
application manually, so cloud native applications are invariably
orchestrated in some way so as to automate the deployment
process. Likewise, orchestration is needed to automate operations
such as scaling of the different microservices and healing failed
instances because these would be too complex and onerous to
perform manually.

With this in mind, the cloud native application designer pays close
attention to the requirements of orchestration and operations
automation right from the outset. The main focus is on achieving
the simplest possible process for bringing up the components of
the application, mainly by minimizing the amount of configuration
that needs to be injected into each component. The following
practices are commonly employed in cloud native applications to
keep things simple from an orchestration standpoint.

Automated IP address assignment. Cloud native application
components invariably use DHCP to obtain IP addresses, so
the orchestrator does not need to be involved in IP address
management.

Shared configuration stores. Cloud native application components
very often participate in a shared distributed key-value store from
which they can obtain most or all of the configuration they need
without the orchestrator having to take responsibility for this.

Automated discovery. Cloud native application components
typically discover the peers with which they need to communicate
either via a shared configuration store or via DNS.

Elimination of hard dependencies. Many inter-component
dependencies typically exist within a given cloud native
application, but the components are designed to be brought
up in any order. If one component depends on a microservice
exposed by another component, and that microservice is not yet
available, then the component will keep trying to connect to it
until it becomes available.

APPLYING CLOUD NATIVE PRINCIPLES
TO VIRTUALIZED NETWORK
FUNCTIONS
We’ve discussed cloud native software architecture in the context
of Web-scale applications such as messaging, social media and
e-commerce, all of which are essentially transactional in nature.
At this point, it is reasonable to ask the question: can these
techniques really be applied to the implementation of virtualized
network functions, given that these may be somewhat different in
nature from Web-scale applications?
In considering how cloud native principles may be applied to
the development of VNFs, we need to make a clear distinction
between control plane functions and data plane (or user plane)
functions.

Control Plane Functions
Control plane functions involve the exchange and processing
of messages. For example, routers exchange Border Gateway
Protocol messages to learn about the reachability of IP address
blocks, and subscribers exchange Session Initiation Protocol
messages with an IP Multimedia Subsystem in order to negotiate
the establishment of a voice or video session. These functions
are transactional in exactly the same sense as the Web-scale
applications that we’ve used as examples of cloud native
architecture in action, and all of the cloud native principles can be
fully applied to their implementation. Metaswitch’s cloud native
IMS core solution, Clearwater, is a good example of this.

Data Plane Functions
Data plane functions involve processing packets or packet flows at
various levels of the protocol stack. For example, routers forward
packets at the IP layer, and may also manipulate packets by
terminating tunnels, inserting VLAN tags and so on, while session
border controllers forward media packets at the application layer,
and may perform various media processing functions. It could
possibly be argued that a data plane function is transactional in
the sense that each incoming packet represents a “transaction”.
However, the work done on each packet in a data plane function
is typically many orders of magnitude less than the work done
in processing a control plane transaction, and simple economics
requires us to process many orders of magnitude more packets

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV6

with a given amount of compute resource compared with control
plane transactions. It is impractical to implement a stateless
processing model for data plane functions because there is far too
much overhead involved in fetching the required state to process
each packet from a separate store. The state that we require
to process each packet must be locally resident in the network
function, in memory or (preferably) in the processor’s cache, in
order for us to process packets economically.

In the section above on stateless processing, we explained
that the stateless approach enables us easily to scale out an
application, and implement fault tolerance with an active-active
N+k redundancy model. So if we can’t apply stateless processing
to data plane functions, does that mean that we can’t build a
scale-out, active-active N+k data plane function? The answer
to this is an emphatic no. By applying appropriate ingenuity in
the way we manage and store state, and how we steer packet
flows, we absolutely can build data plane functions that scale
out with active-active N+k redundancy. For example, we can
divide the state information in any one data plane instance into
logical blocks or “shards”, and re-distribute these shards across
the remaining population of data plane instances when one fails,
while modifying the steering of flows to match.

The next topic we need to consider is whether it makes sense
to decompose data plane functions into microservices. We
can certainly imagine defining any given data plane function
as a sequence of basic actions to be applied to each packet (a
packet processing graph), but does it make sense to implement
the function with a separate software component for each
basic action? The answer to this question depends on exactly
how these components are combined together to deliver
the complete function. Implementing each basic action as a
separately deployable software element in a virtual machine
or container, and stringing them together by means of Service
Function Chaining or some similar technique, may provide a
great deal of flexibility and composability, but it does so at the
expense of enormous inefficiency. This is because the work
done in the underlying fabric to encapsulate and forward packets
between each node of the packet processing graph is likely to be
considerably greater than the work done by the packet processing
functions themselves. On the other hand, if the software elements
that implement each of the basic actions can be composed into
a packet processing graph in the context of a single engine, in
which packets are passed between components in memory, then
we have a “microservices” data plane solution that combines
composability nicely with efficiency.

This concept of a composable packet processing engine in
which multiple software components that perform basic actions
on packets are combined into a single deployable element is
gaining currency in the industry. Two open source projects that
implement this concept were launched in 2016: FD.io and BESS
(Berkeley Extensible Software Switch), both of which appear to
offer great promise for the rapid development of data plane VNFs.
We believe that this approach is the right way to think about the
application of microservices in the data plane domain.

The remaining aspects of the cloud native approach – leveraging
of open source software, containerization and design for
orchestration – are all fully applicable to data plane functions. We
have already mentioned two open source projects that address
the data plane – FD.io and BESS. Linux containers are fully capable
of supporting the packaging of data plane functions, although it
should be noted that, as of January 2017, none of the container
orchestration solutions (including Kubernetes) is currently able
to handle the detailed configuration of network connectivity to
meet the complete needs of data plane functions. We expect this
to change in the near future. And finally, data plane functions are
just as amenable to design for easy orchestration as control plane
functions.

NETWORK FUNCTION SOFTWARE--
TRADITIONAL ARCHITECTURE
Having described the main features of the cloud native approach
to software design, we should now characterize traditional
software architectures – like those that are found in physical
network appliances – in order to highlight just how fundamentally
different the cloud native approach is.

Stateful processing. All state required by a processing element
to enable it to do its work is stored locally. This has two main
negative impacts by comparison with cloud native. Scaling
requires a stateful load balancer which puts an upper limit on
achievable scale. And fault tolerance is usually implemented with
a 1+1 active / standby approach, which doubles the hardware
resources needed to support the function.

Monolithic design. The application is one big lump of code. If
there is some decomposition, it usually reflects the physical
architecture of the hardware appliance for which the software
was designed, with a software module for each blade, but
these modules are generally tightly-coupled and have complex
interdependencies. The package typically includes large amounts
of functionality that is irrelevant to most individual use cases, but
the entire package needs thorough testing of all its functionality
when any change is made to any part of it. This testing overhead
severely limits the frequency of new releases, meaning long cycles
for the introduction of any innovation. There is no possibility of
separating small, distinct elements of software functionality from
the main body of code, and making use of them elsewhere.

Preponderance of proprietary software. The great majority,
if not all, of the software is written specifically for this network
function, and very little use of open source software is made.
This dramatically increases the time and cost of developing the
software. The high costs of development have to be recovered
from customers in the form of high prices, and long development
times slow down innovation.

Operating system dependencies. The software may make heavy
use of specialized operating system or middleware functions, for
example to perform state replication to a standby system. This

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV7

requires the application to be packaged up with its operating
system and middleware and deployed in a virtual machine.
Because it is not possible to deploy the application in containers, it
requires more hardware resources than cloud native applications,
it is considerably harder to deploy and orchestrate, and it needs a
good deal more maintenance.

Hardware dependencies. The software in many networking
appliances is written to take advantage of specific hardware
capabilities provided by a purpose-built, proprietary platform.
As it stands, this software cannot even run on a bare metal off-
the-shelf server, let alone in a cloud environment. Substantial
elements of the software typically need to be re-written to run
on standard hardware. In some cases, a software emulation of
the native proprietary hardware environment is created to enable
existing binaries to be deployed on standard hardware without
having to modify them. It hardly needs to be said that this is not
a recipe for promoting rapid innovation.

Complex configuration and bring-up procedure. Physical
appliances are typically deployed only once in their lives, so
little attention is paid to simplifying their bring-up procedure.
Complex sequences of commands need to be entered by hand,
IP addresses need to be manually assigned and configured, and
this initial configuration must be applied consistently across the
different modules of the system. Such systems are extremely
difficult to orchestrate successfully.

VIRTUALIZATION AND THE VNF
ARCHITECTURE DILEMMA
Many network operators have a reasonable understanding of
cloud native and its advantages, and if they had a choice, would
strongly prefer to deploy Virtualized Network Functions built on
cloud native principles rather than those that started out their
lives as appliances and follow a traditional design pattern – what
we call “ported appliances”.

But there’s a real problem here. Most of the network functions
that network operators wish to virtualize have evolved over
many years and have acquired a great deal of complexity as they
have adapted to meet each new generation of requirements
and industry standards. The software that powers the physical
versions of these functions may comprise millions of lines of
code, and the original codebase may have begun its life fifteen
or twenty years ago. As we have seen, the cloud native approach
to software architecture has some really fundamental differences
from the traditional approach, and these differences run so deep
that it is usually not remotely feasible to consider re-factoring the
existing software to fully embody cloud native principles.

It is entirely possible to build complex telco-grade and standards-
compliant network functions using a cloud native approach.
Metaswitch is one of the first in the industry to have demonstrated
this, with its Project Clearwater, a cloud native implementation of

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV8

the IMS Call Session Control Functions that was first released in
May 2013 and is now in production in a number of networks. But
it’s really only feasible to build cloud native VNFs by starting with
a clean sheet of paper. This necessarily means that early releases
of such VNFs have had no field exposure in large-scale production
deployments and no reference customers. As a result, telcos are
extremely reluctant to take a risk on them, preferring to stick
with what they perceive to be tried and trusted solutions: mature
software that started life as part of physical appliances, and that
has been ported to run in a virtualized environment.

The problem with an NFV strategy based on deploying ported
appliance software is that it will fail to deliver the majority of
benefits that network operators are looking for from NFV.

Opex reductions. Ported appliances are generally extremely
costly and complex to on-board to management and orchestration
systems, and the on-boarding adaptations will need constant
attention throughout the life of the product since new releases
of VNF software are very likely to break them. Ported appliances
generally don’t scale out, so additional complexity in the form of
load-balancers will need to be deployed and managed. From an
operations management point of view, a ported appliance looks
much the same as physical appliance, and will require a similar
amount of effort to manage. And finally, ported appliances will
invariably need to be deployed in virtual machines, which come
with a considerably greater operational overhead than containers.

Service innovation velocity. Ported appliances will suffer from
the same long release cycles as the software on the physical
devices from which they originated, so there will be little or no
opportunity to introduce service innovations any more rapidly
than before.

Capex reduction. Ported appliances that meet all of the functional
and operational requirements demanded by network operators
to replace physical equivalents will be available only from
those same vendors that traditionally supplied those physical
devices. Without the disruptive impact of new vendors in the
market, there will be no incentive for the incumbent vendors
to reduce prices. Furthermore, ported appliances invariably
make inefficient use of hardware resources, partly because they
tend to implement 1+1 fault tolerance, and partly because their
hardware-centric developers are not skilled in the art of delivering
good performance on standard hardware.

PRACTICAL GUIDANCE
The VNF architecture dilemma presents a really challenging
problem for network operators. There’s a difficult risk/reward
trade-off to be made: cloud native VNFs are clearly capable
of delivering far more of the full potential benefits of NFV, but
they may appear to be a considerably riskier option than ported
appliances.

We would make two recommendations to network operators who
are facing this dilemma:

Make the investment in evaluating cloud native VNFs. If there is
a credible cloud native solution on the market for some particular
network function that you are planning to virtualize, make the
investment to properly evaluate it. You may be very pleasantly
surprised.

Insist that your VNF vendors do their best to embrace cloud
native practices. It is probably not reasonable to expect
vendors to re-factor complex existing network function software
to implement stateless processing or microservices. But it is
reasonable to expect them to radically simplify their bring-up and
configuration processes so as enable straightforward on-boarding
to orchestrators.

CONCLUSION
The extraordinarily successful growth of over-the-top social
media, messaging and real-time communications applications in
recent years has demonstrated very clearly the enormous power
of the cloud native approach to software design. These kinds of
Web-scale applications have proven themselves to be massively
scalable, highly fault tolerant, extremely cost-effective, and
capable of evolving very rapidly to better meet the needs of their
users.

The Network Functions Virtualization movement was born of the
recognition by leading telcos that they could learn something from
the success of the Web-scale world and apply those learnings
to their businesses. In this white paper, we have attempted to
distil out the key software techniques that are prevalent in the
Web-scale world, and show how they may be applied in a telco
environment. We have focused on the cloud native approach to
software design, and shown how it can be applied to the building
of Virtualized Network Functions to greatly improve scalability,
fault tolerance, efficiency, orchestratability and service innovation
velocity.

No-one involved in NFV is under any illusions about the enormity
of the challenge that the industry is facing, or the extent of the
upheaval that network operators will have to go through in
order successfully to virtualize their networks. That’s why it’s so
important that we get NFV right. And cloud native is NFV done
right.

Martin Taylor is chief technical officer of Metaswitch Networks. He
joined the company in 2004, and headed up product management
prior to becoming CTO. Previous roles have included founding
CTO at CopperCom, a pioneer in Voice over DSL; VP of Network
Architecture at Madge Networks; and business general manager
at GEC-Marconi. In January 2014, Martin was recognized by Light
Reading as one of the top five industry “movers and shakers” in
Network Functions Virtualization.

ABOUT THE AUTHOR

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV9

