
Network Functions Virtualization is at the heart of the 
most fundamental transformation ever undertaken by the 
communications services industry, with profound impacts on 
technology planning, network engineering, operations and 
procurement.   And despite the enormous upheaval that NFV 
brings to their business, virtually every network operator in the 
world today accepts its vital importance to their future, and many 
have already made great progress in their transformation to a 
software-centric future.

INTRODUCTION
The approach to NFV taken by the majority of network operators 
appears to be driven mainly from a bottom-up, technology-
oriented perspective.  This narrative starts with the observation 
that most network functions can be provided by software running 
on commercial off-the-shelf server hardware at considerably 
lower cost than traditional proprietary purpose-built hardware.  
The modern way to deploy software is with virtualization, and for 
virtualization at scale we need a cloud environment.  If we are 
deploying software in a cloud environment, then we can automate 
operations, and save ourselves a ton of operational expense.  

And because the service is implemented entirely in software, we 
should be able to innovate more rapidly than we could before and 
drive new service revenues.

But there is another perspective on NFV, which is a services-
oriented top-down view.  This perspective can most clearly be 
illustrated by the following question: modestly funded start-ups 
with a few tens of engineers and very limited marketing budgets 
are building software systems in the cloud that deliver rapidly-
evolving and fast-scaling services that are attracting tens or 
hundreds of millions of users and taking big bites out of traditional 
network operator revenues (e.g. WhatsApp) – how on earth are 
they able to do that?

This white paper is about the software techniques that the industry 
needs to adopt to do NFV right.  NFV done right will transform 
the economics of service delivery, simplify the integration and 
deployment of new service capabilities, accelerate the creation 
and progressive enhancement of new services, and enable 
services to be delivered effectively at any scale.  Not done right, 
NFV could fail spectacularly to deliver any return on a very large 
investment.

METASWITCH NETWORKS WWW.METASWITCH.COM/NFV

THE APPLICATION OF CLOUD NATIVE 
DESIGN PRINCIPLES TO NETWORK 
FUNCTIONS VIRTUALIZATION
Martin Taylor. CTO, Metaswitch Networks



A BRIEF HISTORY OF VIRTUALIZATION 
AND CLOUD
Virtualization has a long history in the computer industry, and 
first became a mainstream commercial technology in the mid-
1960s on IBM mainframes.  The modern era of virtualization was 
ushered in by the addition of hardware support for virtualization 
on x86 processors by Intel in 2005-06, which paved the way for the 
introduction of successful hypervisor products such as VMware.  
Up to this point, IT shops had installed a separate physical machine 
for each different server application that they deployed, with the 
result that most machines were severely under-utilized.  With a 
hypervisor they could safely deploy multiple server applications 
per host, consolidating their resources and achieving very 
substantial Capex and Opex savings.

At that time, it was common to see a mix of many different 
operating systems in use for IT applications: various flavors of Unix, 
Solaris, Windows and early versions of Linux.  Naturally, there 
was a requirement to be able to mix applications with different 
operating systems on the same physical host.  So hypervisors were 
designed to expose to applications an emulation of a complete 
physical x86 server: a virtual machine.  The server application, 
together with the operating system it depends on, runs inside 
the virtual machine, safely and securely partitioned from other 
server applications and their supporting guest operating systems 
deployed on the same host.

The business case for virtualization was a compelling one, 
and by 2013 more than half of all IT workloads were running 
virtualized.  IT shops began to view their physical servers not so 
much as a collection of individual machines, but more as a pool 
of computing resources.  When they deploy a server application, 
they don’t much care which particular machine it runs on, so 
long as it has sufficient resources to perform as required.  This is 
led to the introduction of infrastructure software solutions that 
treat a collection of x86 machines as an interchangeable pool of 
resources, and manages the deployment of applications on it: a 
cloud.

Cloud technology enables compute resources to be treated as 
a utility, and this opens up the possibility of a market in which 
compute power can be bought and sold: the public cloud.  
Economies of scale mean that very large providers of public cloud 
services can offer compute power at considerably lower cost than 
can be achieved in small-scale private clouds.  As a result, some IT 
shops now choose to deploy some or all of their applications on 
public cloud services.

For most of the first decade of cloud technology, the great majority 
of applications deployed in both public and private clouds were 
originally written to run on dedicated, bare metal servers.  Cloud 
services offering virtual machines that emulate physical servers, 
so called Infrastructure as a Service, provide an ideal environment 
into which such applications can be moved.

THE EMERGENCE OF CLOUD NATIVE
The availability of inexpensive pay-as-you-go compute power 
in large-scale public clouds opened up a completely new kind 
of opportunity for entrepreneurs: the ability to create network-
based services that could be offered to the public at scale, 
particularly in the realms of social media, messaging and media 
distribution.  In particular, it massively reduced the amount of 
capital risk associated with starting up and scaling such services.
The new ventures that set out to take advantage of this opportunity 
were not writing software to run on dedicated servers, and 
then deploying it on virtual machines in the cloud.  Instead, 
they viewed the cloud as an entirely new kind of distributed 
computing environment that opened up exciting possibilities for 
new application architectures.

What these cloud application developers sought, above all, 
was scalability.  They wanted to be able to deploy systems that 
would scale rapidly through many orders of magnitude with as 
few limitations as possible, and without the requirement to 
re-visit fundamental aspects of application architecture along 
the way.  They also wanted resilience and fault tolerance; they 
recognized that failures can occur at every level of the stack, from 
individual servers to entire data centers, and from individual 
virtual machines to entire cloud instances, and they needed to 
come up with software architectures that would survive multiple 
such failures and continue to deliver services.   But they didn’t 
want to buy fault tolerance in the traditional way by doubling up 
resource usage.  Rather, they expected to absorb the impact of 
failures through modest amounts of surplus capacity combined 
with automated self-healing capabilities.

In addition to scalability and fault tolerance, cloud application 
developers wanted to be able to evolve their software solutions 
quickly to meet new and emerging service requirements.  In 
practice this meant making it possible for multiple teams to work 
on the software simultaneously without tripping over each other.
These were difficult and challenging problems to solve, but the 
successful pioneers in cloud-based application development 
employed some of the best brains in the software industry, and 
there was a good deal of cooperation and sharing of learnings 
among them.  The design patterns of what came to be known 
as cloud native software architecture have emerged over the last 
few years as a consensus within this community.

THE KEY FEATURES OF CLOUD NATIVE 
ARCHITECTURE

Stateless Processing
The requirement for easy scaling across many orders of magnitude 
is the driver behind the single most important concept in cloud 
native architecture: stateless processing.

The concept of stateless processing can be described as follows.  
A transaction processing system is divided into two tiers.  One tier 
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comprises a variable number of identical transaction processing 
elements that do not store any long-lasting state.  The other 
tier comprises a scalable storage system based on a variable 
number of elements that store state information securely and 
redundantly.  The transaction processing elements read relevant 
state information from the state store as required to process any 
given transaction, and if any state information is updated in the 
course of processing that transaction, they write the updated 
state back to the store.

It’s probably not obvious from reading the description above how 
this approach enables massive scalability.  So let’s use a practical 
example to illustrate.

Suppose we are developing an e-commerce application.  The 
application needs to support a number of HTTP transaction 
types including login to account, add item to shopping basket, 
review shopping basket, checkout etc.  The application code that 
processes these transactions needs access to certain information 
(i.e. “state”), for example details of the user’s account and the 
current contents of the shopping basket.  In a traditional application 
architecture, this state would be kept in the application’s local 
storage.

The first problem that we need to solve is how to provide fault 
tolerance.  If a server dies, then any local state that is stored in it is 
lost.  The physical servers that are deployed in cloud environments 
are not particularly reliable, and failures are fairly frequent.  
Users get pretty upset if they’ve spent 30 minutes online grocery 
shopping, and their shopping basket suddenly disappears.  We 
face a difficult choice here: either we accept the risk that a small 
proportion of e-commerce sessions will fail due to equipment 
failure, or we have to deploy a second server to act as a backup, 
and maintain a shadow copy of all the state on it – which doubles 
the amount of hardware resources the application is consuming.

Now suppose that we need this application to support millions of 
concurrent online shopping sessions.  A single server (or active-
standby pair of servers) is not going to be able to handle the load, 
so we need to deploy a number of servers.  The problem that 
we now need to solve is that each incoming HTTP request needs 
to be directed to the correct server, the one that knows about 
this particular user and session.  We therefore need to deploy 
something like a load-balancer in front of our collection of servers, 
and the load-balancer needs to be able to identify the user and 
session from the information in each incoming request, remember 
which server is handling each user session, and re-direct each 
request to the correct server.  The load-balancer is therefore 
quite a complex application in its own right.  And because it’s 
potentially a single point of failure, it needs to be fault tolerant, 
which makes it even more complex.  But the biggest single issue 
here is that the performance and capacity of the load-balancer 
puts an upper limit on the transaction processing load that we can 
handle.  What happens if our e-commerce site is wildly successful 
and we cannot obtain a load-balancer that is powerful enough to 
handle all of the demand?

With the stateless processing approach, we implement the 
elements that process HTTP transactions without any local 
state storage, and have them read and write state to and from 
a separate storage system.  When an HTTP request arrives at 
one of these elements, it extracts some information from the 
request that uniquely identifies the session (for example, from 
a cookie), and then uses this information to retrieve the current 
state associated with this session (user account details, contents 
of shopping basket) from the state store.  If the transaction has 
the effect of changing any of this state, for example because the 
user added an item to her shopping basket, then the transaction 
processing element writes the updated state back to the state 
store.

The difference now is that any incoming HTTP request can be 
handled by any arbitrary instance of the transaction processing 
element.  We do not have to steer each request to the instance 
that “knows” about it, because knowledge about each session is 
available to every processing element instance from the state store.  
We still need some way to balance the load of incoming requests 
across the population of transaction processing elements, but we 
can do this without having to deploy a load-balancer, for example 
by leveraging DNS to perform dumb round-robin load balancing.  
By eliminating the load-balancer, we’ve eliminated the limiting 
factor on scale.  We also don’t need to worry about any individual 
transaction processing element failing.  Such failures do not result 
in the loss of any state, because all the state is stored separately.

The stateless approach is therefore inherently fault tolerant.  If any 
processing element instance dies or becomes unresponsive, then 
the built-in re-try mechanisms of HTTP will result in subsequent 
attempts being handled by another instance.  So long as we have 
a modest amount of performance headroom in our population of 
processing elements, the failure of any one of them has no impact 
on the service: the load that it would otherwise have handled is 
simply re-distributed across the remaining instances.  We can very 
easily extend this fault tolerance mechanism across multiple data 
centers, so that even the loss of an entire data center will not 
bring down our service.

Individual processing elements can be quite small in scale:  we 
can keep the architecture of these elements simple by not 
worrying about trying to make them very powerful, for example 
with support for lots of multi-core parallelism.  We handle scaling 
by deploying as many processing element instances as we need 
to handle the load, an approach which is known as “scale out” 
(in contrast to “scale up”).  We can also change the number of 
processing elements on the fly (scaling both out and in) in response 
to changing load – enabling us to make the most efficient use of 
compute resources at all times.

All of this depends, of course, on our ability to build and deploy 
a highly scalable and very fault-tolerant storage system in 
which to keep all of our application state.  Because this is an 
absolutely fundamental requirement of the stateless processing 
design pattern, there has been a lot of investment in this area, 
particularly by the main Web-scale players.  Many of the solutions 
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that they have built to address this need are available as open 
source.  For example, one of the leading distributed state stores, 
Apache Cassandra, was originally developed at Facebook, and 
is now used by Netflix, Twitter, Instagram and Webex among 
many others.  Test results published by Netflix show Cassandra 
performance scaling linearly with number of nodes up to 300, and 
handling over a million writes per second with 3-way redundancy 
– more than enough to handle the needs of most telco-style 
services even with many hundreds of millions of subscribers.  
Cassandra includes support for efficient state replication between 
geographically separate locations, and therefore provides an 
excellent basis for extremely resilient geo-redundant services.

It’s perhaps worth pointing out that stateless processing is by no 
means the only design pattern seen in cloud native applications, 
although it’s definitely the most prominent.  Other design 
patterns worth mentioning include stream processing (based on 
frameworks such as Heron or Storm) and serverless processing, 
best exemplified by Amazon Lambda.  These have only emerged 
relatively recently, and won’t be discussed further in this 
document – but they definitely have potential to advance the 
state of the art in Network Functions Virtualization. 

Microservices
After stateless processing, the second most frequently cited aspect 
of the cloud native approach to software design is microservices, 
defined as follows:

Microservices is a software architecture style in which 
complex applications are composed of small, independent 
processes communicating with each other using language-
agnostic APIs. These services are highly decoupled and focus 
on doing a single small task well, facilitating a modular 
approach to system-building.

Microservices is a big topic: entire books have been written about 
it, and we only have room for a brief summary here.  The main 
benefits of a microservices approach are as follows:

Composability and reusability.  Microservices encourages the 
development of modular software components each of which 
performs a very specific task that is exposed via a well-documented 
API.  Components built this way lend themselves to easy re-use in 
a variety of different circumstances, enabling applications to be 
“composed” by combining a suitable set of microservices glued 
together by a lightweight front end.

Technology heterogeneity.  Microservices enables development 
teams to pick the best software technology and language for the 
implementation of any given application component, without 
worrying about the rest of the system.  Components are loosely-
coupled, typically via Web services APIs, and this hides their 
implementation details.

Efficient scaling.  Each microservice can be designed to scale out 
independently of other microservices associated with a given 
application, which typically means we get more efficient use of 
resources than with monolithic applications where all functions 
have to scale in lockstep.

Ease of development and deployment.  It’s possible to make 
incremental enhancements to microservices and deploy these 
to production independently of other microservices.  If any 
problems arise from the new version of a given microservices 
component, the change can quickly be rolled back.  This allows 
for a DevOps approach to the progressive enhancement of an 
overall application, enabling innovations to be introduced much 
more rapidly than with monolithic applications which inevitably 
accumulate many changes between releases, requiring far more 
comprehensive testing.
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Those with a long history in software may be tempted to 
dismiss microservices as just a new label for Service-Oriented 
Architecture (SOA), which has been around for many years.  There 
are, of course, many similarities and some practitioners talk about 
microservices as “fine-grained SOA”.   The main difference from 
SOA is the size and scope of the service components: making 
them fine-grained improves composability, reusability and ease 
of deployment.  Making them too fine-grained may introduce 
unacceptable inefficiency in the application, so getting the 
balance right is important.  

The microservices approach is not a panacea.  Highly distributed 
loosely-coupled systems bring their own complications, and 
the complexity of a large application does not disappear just 
because it is reduced to a set of relatively simple components.  
Nevertheless, most of the Web-scale players are strongly bought 
into microservices, none more so than Netflix.  Following a 
disastrous outage in 2008, Netflix started transitioning away from 
a single monolithic Web application, and has now deployed in 
excess of 500 microservices to support their Web presence and 
business operations.  Netflix has blogged extensively about its 
microservices journey, and this material is essential reading for 
anyone wanting to get under the skin of this approach to system 
design.

Open Source Software
Making use of open source software components is not in any 
sense a fundamental requirement of a cloud native architecture, 
but it’s an observable fact that most developers of cloud native 
applications leverage open source software very effectively.

We’ve already mentioned one open source project that is widely 
used in cloud native applications – the scalable state storage 
database Apache Cassandra.  There are many other open source 
solutions for state storage, including MongoDB, Couchbase and 
Memcached.  And there are open source solutions for many 
other kinds of generic functions that are needed for cloud native 
applications and their management: Web servers (Apache 
HTTP Server, NGINX), protocol stacks (libcurl, snmpd), client-
side scripting (jQuery), secure communications (OpenSSL), 
DNS (dnsmasq), monitoring (monit), log collection / storage / 
visualization (Elasticsearch, Fluentd, Kibana) and so on.

Many of these open source projects have substantial communities 
supporting them and many years of broad exposure in the field, 
so they can be incorporated into cloud native applications with 
confidence.  Occasionally, using these kinds of open source 
software in some new application exposes bugs or deficiencies 
which the community behind the project may not view as high 
priorities to fix.  In that case, the developers of the application 
usually address the problem themselves, and upstream the fixes.  
Making necessary improvements in open source components of 
a cloud native application is one of the overheads that should be 
taken into account in the development planning process.

Making wise use of open source software can completely 
transform the economics of developing and supporting complex 

Web-scale applications by dramatically reducing the amount 
of new code that needs to be written, and by leveraging the 
community to provide support and bug fixes.  Relatively small 
teams of developers can complete substantial projects much 
faster and with fewer bugs than if they had to write all of the 
application code, and can focus on the most important aspect of 
new applications: innovation.

Containers
In the discussion above on the history of virtualization, we 
described the hypervisor and its support for the deployment of 
application software in virtual machines.   But there is an alternative 
approach to virtualization that happens to be particularly well-
suited to cloud native applications: Linux containers.

Containers leverage a long-standing method for partitioning 
in Linux known as “namespaces”, which provides separation of 
different processes, filesystems and network stacks.  A container 
is a secure partition based on namespaces in which one or more 
Linux processes run, supported by the Linux kernel installed on 
the host system.

The main difference between a container and a virtual machine is 
that a virtual machine needs a complete operating system installed 
in it to support the application, whereas a container only needs to 
package up the application software, with the optional addition 
of any application-specific OS dependencies, and leverages the 
operating system kernel running on the host.

Containers offer a number of advantages over virtual machines, 
including the following:

Lower overhead.  Because they do not (in most cases) contain 
complete operating system images, containers have a far smaller 
memory footprint than virtual machines, and therefore consume 
considerably less hardware resources.  Their small footprint may 
make it feasible to deploy instances of software to serve single 
tenants for some kinds of services, and this could simplify the 
design of the software very considerably.

Startup speed.  Virtual machine images are large because they 
include a complete guest operating system, and the time taken 
to start a new VM is largely dictated by the time taken to copy 
its image to the host on which it is to run, which may take many 
seconds.  By contrast, container images tend to be very small, and 
they can often start up in less than 50 ms.  This enables cloud 
native applications to scale and heal extremely quickly, and also 
allows for new approaches to system design in which containers 
are spawned to process individual transactions, and are disposed 
of as soon as the transaction is complete. 

Reduced maintenance.  Virtual machines contain guest 
operating systems, and these must be maintained, for example 
to apply security patches to protect against recently discovered 
vulnerabilities.  Containers require no equivalent maintenance.

Ease of deployment.  Containers provide a high degree of 
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portability across operating environments, making it easy to 
move a containerized application from development through 
testing into production without having to make changes along 
the way.  Furthermore, containers allow workloads to be moved 
easily between private and public cloud environments.  Being 
much more straightforward to deploy in the cloud than virtual 
machines, they are also much easier to orchestrate.

If you need to deploy an application that was originally designed 
to run on a dedicated server into a cloud environment, chances 
are you will need to deploy it in a virtual machine because of 
operating system or hardware dependencies.  But if you are 
writing new software to run in a cloud environment (in other 
words, cloud native software), then it’s very easy to do so in a 
container-friendly way.  Most cloud native software in the Web-
scale world today is deployed in containers because of the 
compelling benefits they offer.

Design for Orchestration
Cloud native applications tend to comprise a substantial number 
of different software components, partly because they usually 
implement stateless processing (and therefore have separate 
components for transaction processing and state storage), and 
partly because they are usually decomposed into a number of 
microservices.  Furthermore, each microservice is designed to scale 
out, and so multiple instances of each microservice component 
need to be deployed to handle the load on the application.  For 
these reasons, deploying a cloud native application at scale may 
require the instantiation of many tens or hundreds of virtual 
machines or containers.

It is totally infeasible to carry out the deployment of such an 
application manually, so cloud native applications are invariably 
orchestrated in some way so as to automate the deployment 
process.  Likewise, orchestration is needed to automate operations 
such as scaling of the different microservices and healing failed 
instances because these would be too complex and onerous to 
perform manually.

With this in mind, the cloud native application designer pays close 
attention to the requirements of orchestration and operations 
automation right from the outset.  The main focus is on achieving 
the simplest possible process for bringing up the components of 
the application, mainly by minimizing the amount of configuration 
that needs to be injected into each component.  The following 
practices are commonly employed in cloud native applications to 
keep things simple from an orchestration standpoint.

Automated IP address assignment.  Cloud native application 
components invariably use DHCP to obtain IP addresses, so 
the orchestrator does not need to be involved in IP address 
management.

Shared configuration stores.  Cloud native application components 
very often participate in a shared distributed key-value store from 
which they can obtain most or all of the configuration they need 
without the orchestrator having to take responsibility for this.

Automated discovery.  Cloud native application components 
typically discover the peers with which they need to communicate 
either via a shared configuration store or via DNS.

Elimination of hard dependencies.  Many inter-component 
dependencies typically exist within a given cloud native 
application, but the components are designed to be brought 
up in any order.  If one component depends on a microservice 
exposed by another component, and that microservice is not yet 
available, then the component will keep trying to connect to it 
until it becomes available.

APPLYING CLOUD NATIVE PRINCIPLES 
TO VIRTUALIZED NETWORK
FUNCTIONS
We’ve discussed cloud native software architecture in the context 
of Web-scale applications such as messaging, social media and 
e-commerce, all of which are essentially transactional in nature.  
At this point, it is reasonable to ask the question: can these 
techniques really be applied to the implementation of virtualized 
network functions, given that these may be somewhat different in 
nature from Web-scale applications?
In considering how cloud native principles may be applied to 
the development of VNFs, we need to make a clear distinction 
between control plane functions and data plane (or user plane) 
functions.  

Control Plane Functions
Control plane functions involve the exchange and processing 
of messages.  For example, routers exchange Border Gateway 
Protocol messages to learn about the reachability of IP address 
blocks, and subscribers exchange Session Initiation Protocol 
messages with an IP Multimedia Subsystem in order to negotiate 
the establishment of a voice or video session.  These functions 
are transactional in exactly the same sense as the Web-scale 
applications that we’ve used as examples of cloud native 
architecture in action, and all of the cloud native principles can be 
fully applied to their implementation.  Metaswitch’s cloud native 
IMS core solution, Clearwater, is a good example of this.

Data Plane Functions
Data plane functions involve processing packets or packet flows at 
various levels of the protocol stack.  For example, routers forward 
packets at the IP layer, and may also manipulate packets by 
terminating tunnels, inserting VLAN tags and so on, while session 
border controllers forward media packets at the application layer, 
and may perform various media processing functions.  It could 
possibly be argued that a data plane function is transactional in 
the sense that each incoming packet represents a “transaction”.  
However, the work done on each packet in a data plane function 
is typically many orders of magnitude less than the work done 
in processing a control plane transaction, and simple economics 
requires us to process many orders of magnitude more packets 
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with a given amount of compute resource compared with control 
plane transactions.  It is impractical to implement a stateless 
processing model for data plane functions because there is far too 
much overhead involved in fetching the required state to process 
each packet from a separate store.  The state that we require 
to process each packet must be locally resident in the network 
function, in memory or (preferably) in the processor’s cache, in 
order for us to process packets economically.

In the section above on stateless processing, we explained 
that the stateless approach enables us easily to scale out an 
application, and implement fault tolerance with an active-active 
N+k redundancy model.  So if we can’t apply stateless processing 
to data plane functions, does that mean that we can’t build a 
scale-out, active-active N+k data plane function?  The answer 
to this is an emphatic no.  By applying appropriate ingenuity in 
the way we manage and store state, and how we steer packet 
flows, we absolutely can build data plane functions that scale 
out with active-active N+k redundancy.  For example, we can 
divide the state information in any one data plane instance into 
logical blocks or “shards”, and re-distribute these shards across 
the remaining population of data plane instances when one fails, 
while modifying the steering of flows to match.

The next topic we need to consider is whether it makes sense 
to decompose data plane functions into microservices.  We 
can certainly imagine defining any given data plane function 
as a sequence of basic actions to be applied to each packet (a 
packet processing graph), but does it make sense to implement 
the function with a separate software component for each 
basic action?   The answer to this question depends on exactly 
how these components are combined together to deliver 
the complete function.  Implementing each basic action as a 
separately deployable software element in a virtual machine 
or container, and stringing them together by means of Service 
Function Chaining or some similar technique, may provide a 
great deal of flexibility and composability, but it does so at the 
expense of enormous inefficiency.  This is because the work 
done in the underlying fabric to encapsulate and forward packets 
between each node of the packet processing graph is likely to be 
considerably greater than the work done by the packet processing 
functions themselves.  On the other hand, if the software elements 
that implement each of the basic actions can be composed into 
a packet processing graph in the context of a single engine, in 
which packets are passed between components in memory, then 
we have a “microservices” data plane solution that combines 
composability nicely with efficiency.

This concept of a composable packet processing engine in 
which multiple software components that perform basic actions 
on packets are combined into a single deployable element is 
gaining currency in the industry.  Two open source projects that 
implement this concept were launched in 2016: FD.io and BESS 
(Berkeley Extensible Software Switch), both of which appear to 
offer great promise for the rapid development of data plane VNFs.  
We believe that this approach is the right way to think about the 
application of microservices in the data plane domain.

The remaining aspects of the cloud native approach – leveraging 
of open source software, containerization and design for 
orchestration – are all fully applicable to data plane functions.  We 
have already mentioned two open source projects that address 
the data plane – FD.io and BESS.  Linux containers are fully capable 
of supporting the packaging of data plane functions, although it 
should be noted that, as of January 2017, none of the container 
orchestration solutions (including Kubernetes) is currently able 
to handle the detailed configuration of network connectivity to 
meet the complete needs of data plane functions.  We expect this 
to change in the near future.  And finally, data plane functions are 
just as amenable to design for easy orchestration as control plane 
functions.

NETWORK FUNCTION SOFTWARE--
TRADITIONAL ARCHITECTURE
Having described the main features of the cloud native approach 
to software design, we should now characterize traditional 
software architectures – like those that are found in physical 
network appliances – in order to highlight just how fundamentally 
different the cloud native approach is.

Stateful processing.  All state required by a processing element 
to enable it to do its work is stored locally.  This has two main 
negative impacts by comparison with cloud native.  Scaling 
requires a stateful load balancer which puts an upper limit on 
achievable scale.  And fault tolerance is usually implemented with 
a 1+1 active / standby approach, which doubles the hardware 
resources needed to support the function.

Monolithic design.  The application is one big lump of code.  If 
there is some decomposition, it usually reflects the physical 
architecture of the hardware appliance for which the software 
was designed, with a software module for each blade, but 
these modules are generally tightly-coupled and have complex 
interdependencies.  The package typically includes large amounts 
of functionality that is irrelevant to most individual use cases, but 
the entire package needs thorough testing of all its functionality 
when any change is made to any part of it.  This testing overhead 
severely limits the frequency of new releases, meaning long cycles 
for the introduction of any innovation.  There is no possibility of 
separating small, distinct elements of software functionality from 
the main body of code, and making use of them elsewhere.

Preponderance of proprietary software.  The great majority, 
if not all, of the software is written specifically for this network 
function, and very little use of open source software is made.  
This dramatically increases the time and cost of developing the 
software.  The high costs of development have to be recovered 
from customers in the form of high prices, and long development 
times slow down innovation.

Operating system dependencies.  The software may make heavy 
use of specialized operating system or middleware functions, for 
example to perform state replication to a standby system.  This 
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requires the application to be packaged up with its operating 
system and middleware and deployed in a virtual machine.  
Because it is not possible to deploy the application in containers, it 
requires more hardware resources than cloud native applications, 
it is considerably harder to deploy and orchestrate, and it needs a 
good deal more maintenance.

Hardware dependencies.  The software in many networking 
appliances is written to take advantage of specific hardware 
capabilities provided by a purpose-built, proprietary platform.  
As it stands, this software cannot even run on a bare metal off-
the-shelf server, let alone in a cloud environment.  Substantial 
elements of the software typically need to be re-written to run 
on standard hardware.  In some cases, a software emulation of 
the native proprietary hardware environment is created to enable 
existing binaries to be deployed on standard hardware without 
having to modify them.  It hardly needs to be said that this is not 
a recipe for promoting rapid innovation.

Complex configuration and bring-up procedure.  Physical 
appliances are typically deployed only once in their lives, so 
little attention is paid to simplifying their bring-up procedure.  
Complex sequences of commands need to be entered by hand, 
IP addresses need to be manually assigned and configured, and 
this initial configuration must be applied consistently across the 
different modules of the system.  Such systems are extremely 
difficult to orchestrate successfully.

VIRTUALIZATION AND THE VNF 
ARCHITECTURE DILEMMA
Many network operators have a reasonable understanding of 
cloud native and its advantages, and if they had a choice, would 
strongly prefer to deploy Virtualized Network Functions built on 
cloud native principles rather than those that started out their 
lives as appliances and follow a traditional design pattern – what 
we call “ported appliances”.

But there’s a real problem here.  Most of the network functions 
that network operators wish to virtualize have evolved over 
many years and have acquired a great deal of complexity as they 
have adapted to meet each new generation of requirements 
and industry standards.  The software that powers the physical 
versions of these functions may comprise millions of lines of 
code, and the original codebase may have begun its life fifteen 
or twenty years ago.  As we have seen, the cloud native approach 
to software architecture has some really fundamental differences 
from the traditional approach, and these differences run so deep 
that it is usually not remotely feasible to consider re-factoring the 
existing software to fully embody cloud native principles.

It is entirely possible to build complex telco-grade and standards-
compliant network functions using a cloud native approach.  
Metaswitch is one of the first in the industry to have demonstrated 
this, with its Project Clearwater, a cloud native implementation of 
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the IMS Call Session Control Functions that was first released in 
May 2013 and is now in production in a number of networks.  But 
it’s really only feasible to build cloud native VNFs by starting with 
a clean sheet of paper.  This necessarily means that early releases 
of such VNFs have had no field exposure in large-scale production 
deployments and no reference customers.  As a result, telcos are 
extremely reluctant to take a risk on them, preferring to stick 
with what they perceive to be tried and trusted solutions: mature 
software that started life as part of physical appliances, and that 
has been ported to run in a virtualized environment.

The problem with an NFV strategy based on deploying ported 
appliance software is that it will fail to deliver the majority of 
benefits that network operators are looking for from NFV. 

Opex reductions.  Ported appliances are generally extremely 
costly and complex to on-board to management and orchestration 
systems, and the on-boarding adaptations will need constant 
attention throughout the life of the product since new releases 
of VNF software are very likely to break them.  Ported appliances 
generally don’t scale out, so additional complexity in the form of 
load-balancers will need to be deployed and managed.  From an 
operations management point of view, a ported appliance looks 
much the same as physical appliance, and will require a similar 
amount of effort to manage.  And finally, ported appliances will 
invariably need to be deployed in virtual machines, which come 
with a considerably greater operational overhead than containers.

Service innovation velocity.  Ported appliances will suffer from 
the same long release cycles as the software on the physical 
devices from which they originated, so there will be little or no 
opportunity to introduce service innovations any more rapidly 
than before.

Capex reduction.  Ported appliances that meet all of the functional 
and operational requirements demanded by network operators 
to replace physical equivalents will be available only from 
those same vendors that traditionally supplied those physical 
devices.  Without the disruptive impact of new vendors in the 
market, there will be no incentive for the incumbent vendors 
to reduce prices.  Furthermore, ported appliances invariably 
make inefficient use of hardware resources, partly because they 
tend to implement 1+1 fault tolerance, and partly because their 
hardware-centric developers are not skilled in the art of delivering 
good performance on standard hardware.

PRACTICAL GUIDANCE
The VNF architecture dilemma presents a really challenging 
problem for network operators.  There’s a difficult risk/reward 
trade-off to be made: cloud native VNFs are clearly capable 
of delivering far more of the full potential benefits of NFV, but 
they may appear to be a considerably riskier option than ported 
appliances.

We would make two recommendations to network operators who 
are facing this dilemma:

Make the investment in evaluating cloud native VNFs.  If there is 
a credible cloud native solution on the market for some particular 
network function that you are planning to virtualize, make the 
investment to properly evaluate it.  You may be very pleasantly 
surprised.

Insist that your VNF vendors do their best to embrace cloud 
native practices.  It is probably not reasonable to expect 
vendors to re-factor complex existing network function software 
to implement stateless processing or microservices.  But it is 
reasonable to expect them to radically simplify their bring-up and 
configuration processes so as enable straightforward on-boarding 
to orchestrators.

CONCLUSION
The extraordinarily successful growth of over-the-top social 
media, messaging and real-time communications applications in 
recent years has demonstrated very clearly the enormous power 
of the cloud native approach to software design.  These kinds of 
Web-scale applications have proven themselves to be massively 
scalable, highly fault tolerant, extremely cost-effective, and 
capable of evolving very rapidly to better meet the needs of their 
users. 

The Network Functions Virtualization movement was born of the 
recognition by leading telcos that they could learn something from 
the success of the Web-scale world and apply those learnings 
to their businesses.   In this white paper, we have attempted to 
distil out the key software techniques that are prevalent in the 
Web-scale world, and show how they may be applied in a telco 
environment.  We have focused on the cloud native approach to 
software design, and shown how it can be applied to the building 
of Virtualized Network Functions to greatly improve scalability, 
fault tolerance, efficiency, orchestratability and service innovation 
velocity.  

No-one involved in NFV is under any illusions about the enormity 
of the challenge that the industry is facing, or the extent of the 
upheaval that network operators will have to go through in 
order successfully to virtualize their networks.  That’s why it’s so 
important that we get NFV right.  And cloud native is NFV done 
right.
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